Processing math: 100%
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 6, Pages 1218–1257 (Mi smj930)  

This article is cited in 20 scientific papers (total in 20 papers)

Integro-local and integral theorems for sums of random variables with semiexponential distributions

A. A. Borovkov, A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We obtain some integro-local and integral limit theorems for the sums S(n)=ξ(1)++ξ(n) of independent random variables with general semiexponential distribution (i.e., a distribution whose right tail has the form P(ξt)=etβL(t), where β(0,1) and L(t) is a slowly varying function with some smoothness properties). These theorems describe the asymptotic behavior as x of the probabilities
P(S(n)[x,x+Δ)) and P(S(n)x)
in the zone of normal deviations and all zones of large deviations of x: in the Cramer and intermediate zones, and also in the “extreme” zone where the distribution of S(n) is approximated by that of the maximal summand.
Keywords: semiexponential distribution, integro-local theorem, Cramér series, segment of the Cramér series, random walk, large deviations, Cramér zone of deviations, intermediate zone of deviations, zone of approximation by the maximal summand.
Received: 29.08.2006
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 6, Pages 990–1026
DOI: https://doi.org/10.1007/s11202-006-0110-x
Bibliographic databases:
UDC: 519.21
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skii, “Integro-local and integral theorems for sums of random variables with semiexponential distributions”, Sibirsk. Mat. Zh., 47:6 (2006), 1218–1257; Siberian Math. J., 47:6 (2006), 990–1026
Citation in format AMSBIB
\Bibitem{BorMog06}
\by A.~A.~Borovkov, A.~A.~Mogul'skii
\paper Integro-local and integral theorems for sums of random variables with semiexponential distributions
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 6
\pages 1218--1257
\mathnet{http://mi.mathnet.ru/smj930}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2302841}
\zmath{https://zbmath.org/?q=an:1150.60021}
\elib{https://elibrary.ru/item.asp?id=12941078}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 6
\pages 990--1026
\crossref{https://doi.org/10.1007/s11202-006-0110-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243454700003}
\elib{https://elibrary.ru/item.asp?id=13530870}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845503684}
Linking options:
  • https://www.mathnet.ru/eng/smj930
  • https://www.mathnet.ru/eng/smj/v47/i6/p1218
  • This publication is cited in the following 20 articles:
    1. Gerold Alsmeyer, Alexander Iksanov, Zakhar Kabluchko, “On Decoupled Standard Random Walks”, J Theor Probab, 38:1 (2025)  crossref
    2. Milad Bakhshizadeh, Arian Maleki, Victor H de la Pena, “Sharp concentration results for heavy-tailed distributions”, Information and Inference: A Journal of the IMA, 12:3 (2023), 1655  crossref
    3. A. A. Borovkov, “Moderately large deviation principles for trajectories of compound renewal processes”, Theory Probab. Appl., 64:2 (2019), 324–333  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. Konstantinides D.G., “Precise Large Deviations For Subexponential Distributions in a Multi Risk Model”, Risks, 6:2 (2018), 27  crossref  isi  scopus
    5. Lehtomaa J., “Large Deviations of Means of Heavy-Tailed Random Variables With Finite Moments of All Orders”, J. Appl. Probab., 54:1 (2017), 66–81  crossref  mathscinet  zmath  isi  scopus
    6. V. E. Mosyagin, N. A. Shvemler, “Lokalnye svoistva predelnogo raspredeleniya statisticheskoi otsenki tochki razryva plotnosti”, Sib. elektron. matem. izv., 14 (2017), 1307–1316  mathnet  crossref
    7. A. A. Borovkov, K. A. Borovkov, “Blackwell-type theorems for weighted renewal functions”, Siberian Math. J., 55:4 (2014), 589–605  mathnet  crossref  mathscinet  isi
    8. A. A. Borovkov, A. A. Mogul'skiǐ, “Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments”, Siberian Adv. Math., 25:1 (2015), 39–55  mathnet  crossref  mathscinet
    9. A. A. Borovkov, A. A. Mogul'skii, “Moderately large deviation principles for trajectories of random walks and processes with independent increments”, Theory Probab. Appl., 58:4 (2014), 562–581  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. Blanchet J., Liu J., “Efficient Simulation and Conditional Functional Limit Theorems for Ruinous Heavy-Tailed Random Walks”, Stoch. Process. Their Appl., 122:8 (2012), 2994–3031  crossref  mathscinet  zmath  isi  elib  scopus
    11. Denisov D., Shneer S., “Global and local asymptotics for the busy period of an $M/G/1$ queue”, Queueing Syst., 64:4 (2010), 383–393  crossref  mathscinet  zmath  isi  elib  scopus
    12. Denisov D., Foss S., Korshunov D., “Asymptotics of randomly stopped sums in the presence of heavy tails”, Bernoulli, 16:4 (2010), 971–994  crossref  mathscinet  zmath  isi  elib  scopus
    13. Aleškevičienė A., Leipus R., Šiaulys J., “Second-order asymptotics of ruin probabilities for semiexponential claims”, Lith. Math. J., 49:4 (2009), 364–371  crossref  mathscinet  zmath  isi  scopus
    14. A. I. Sakhanenko, “Otsenki tipa Berri–Esseena dlya veroyatnostei bolshikh uklonenii pri narushenii usloviya Kramera”, Sib. elektron. matem. izv., 6 (2009), 191–198  mathnet  mathscinet
    15. A. A. Mogulskii, “Integralnye i integro-lokalnye teoremy dlya summ sluchainykh velichin s semieksponentsialnymi raspredeleniyami”, Sib. elektron. matem. izv., 6 (2009), 251–271  mathnet  mathscinet  elib
    16. A. A. Mogulskiǐ, Ch. Pagma, “Superlarge deviations for sums of random variables with arithmetical super-exponential distributions”, Siberian Adv. Math., 18:3 (2008), 185–208  mathnet  crossref  mathscinet
    17. A. A. Mogul'skii, “An integro-local theorem applicable on the whole half-axis to the sums of random variables with regularly varying distributions”, Siberian Math. J., 49:4 (2008), 669–683  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    18. Denisov D., Dieker A.B., Shneer V., “Large deviations for random walks under subexponentiality: the big-jump domain”, Ann. Probab., 36:5 (2008), 1946–1991  crossref  mathscinet  zmath  isi  elib  scopus
    19. A. A. Borovkov, A. A. Mogul'skii, “On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I”, Theory Probab. Appl., 53:2 (2009), 301–311  mathnet  crossref  crossref  zmath  isi
    20. A. A. Mogul'skii, “Large deviations of the first passage time for a random walk with semiexponentially distributed jumps”, Siberian Math. J., 47:6 (2006), 1084–1101  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:588
    Full-text PDF :177
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025