Abstract:
We obtain some integro-local and integral limit theorems for the sums S(n)=ξ(1)+⋯+ξ(n) of independent random variables with general semiexponential distribution (i.e., a distribution whose right tail has the form P(ξ⩾t)=e−tβL(t), where β∈(0,1) and L(t) is a slowly varying function with some smoothness properties). These theorems describe the asymptotic behavior as x→∞ of the probabilities
P(S(n)∈[x,x+Δ)) and P(S(n)⩾x)
in the zone of normal deviations and all zones of large deviations of x: in the Cramer and intermediate zones, and also in the “extreme” zone where the distribution of S(n) is approximated by that of the maximal summand.
Keywords:
semiexponential distribution, integro-local theorem, Cramér series, segment of the Cramér series, random walk, large deviations, Cramér zone of deviations, intermediate zone of deviations, zone of approximation by the maximal summand.
Citation:
A. A. Borovkov, A. A. Mogul'skii, “Integro-local and integral theorems for sums of random variables with semiexponential distributions”, Sibirsk. Mat. Zh., 47:6 (2006), 1218–1257; Siberian Math. J., 47:6 (2006), 990–1026
\Bibitem{BorMog06}
\by A.~A.~Borovkov, A.~A.~Mogul'skii
\paper Integro-local and integral theorems for sums of random variables with semiexponential distributions
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 6
\pages 1218--1257
\mathnet{http://mi.mathnet.ru/smj930}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2302841}
\zmath{https://zbmath.org/?q=an:1150.60021}
\elib{https://elibrary.ru/item.asp?id=12941078}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 6
\pages 990--1026
\crossref{https://doi.org/10.1007/s11202-006-0110-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243454700003}
\elib{https://elibrary.ru/item.asp?id=13530870}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845503684}
Linking options:
https://www.mathnet.ru/eng/smj930
https://www.mathnet.ru/eng/smj/v47/i6/p1218
This publication is cited in the following 20 articles:
Gerold Alsmeyer, Alexander Iksanov, Zakhar Kabluchko, “On Decoupled Standard Random Walks”, J Theor Probab, 38:1 (2025)
Milad Bakhshizadeh, Arian Maleki, Victor H de la Pena, “Sharp concentration results for heavy-tailed distributions”, Information and Inference: A Journal of the IMA, 12:3 (2023), 1655
A. A. Borovkov, “Moderately large deviation principles for trajectories of compound renewal processes”, Theory Probab. Appl., 64:2 (2019), 324–333
Konstantinides D.G., “Precise Large Deviations For Subexponential Distributions in a Multi Risk Model”, Risks, 6:2 (2018), 27
Lehtomaa J., “Large Deviations of Means of Heavy-Tailed Random Variables With Finite Moments of All Orders”, J. Appl. Probab., 54:1 (2017), 66–81
V. E. Mosyagin, N. A. Shvemler, “Lokalnye svoistva predelnogo raspredeleniya statisticheskoi otsenki tochki razryva plotnosti”, Sib. elektron. matem. izv., 14 (2017), 1307–1316
A. A. Borovkov, K. A. Borovkov, “Blackwell-type theorems for weighted renewal functions”, Siberian Math. J., 55:4 (2014), 589–605
A. A. Borovkov, A. A. Mogul'skiǐ, “Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments”, Siberian Adv. Math., 25:1 (2015), 39–55
A. A. Borovkov, A. A. Mogul'skii, “Moderately large deviation principles for trajectories of random walks and processes with independent increments”, Theory Probab. Appl., 58:4 (2014), 562–581
Blanchet J., Liu J., “Efficient Simulation and Conditional Functional Limit Theorems for Ruinous Heavy-Tailed Random Walks”, Stoch. Process. Their Appl., 122:8 (2012), 2994–3031
Denisov D., Shneer S., “Global and local asymptotics for the busy period of an $M/G/1$ queue”, Queueing Syst., 64:4 (2010), 383–393
Denisov D., Foss S., Korshunov D., “Asymptotics of randomly stopped sums in the presence of heavy tails”, Bernoulli, 16:4 (2010), 971–994
Aleškevičienė A., Leipus R., Šiaulys J., “Second-order asymptotics of ruin probabilities for semiexponential claims”, Lith. Math. J., 49:4 (2009), 364–371
A. I. Sakhanenko, “Otsenki tipa Berri–Esseena dlya veroyatnostei bolshikh uklonenii pri narushenii usloviya Kramera”, Sib. elektron. matem. izv., 6 (2009), 191–198
A. A. Mogulskii, “Integralnye i integro-lokalnye teoremy dlya summ sluchainykh velichin s semieksponentsialnymi raspredeleniyami”, Sib. elektron. matem. izv., 6 (2009), 251–271
A. A. Mogulskiǐ, Ch. Pagma, “Superlarge deviations for sums of random variables with arithmetical super-exponential distributions”, Siberian Adv. Math., 18:3 (2008), 185–208
A. A. Mogul'skii, “An integro-local theorem applicable on the whole half-axis to the sums of random variables with regularly varying distributions”, Siberian Math. J., 49:4 (2008), 669–683
Denisov D., Dieker A.B., Shneer V., “Large deviations for random walks under subexponentiality: the big-jump domain”, Ann. Probab., 36:5 (2008), 1946–1991
A. A. Borovkov, A. A. Mogul'skii, “On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I”, Theory Probab. Appl., 53:2 (2009), 301–311
A. A. Mogul'skii, “Large deviations of the first passage time for a random walk with semiexponentially distributed jumps”, Siberian Math. J., 47:6 (2006), 1084–1101