Abstract:
This paper studies the asymptotic behavior of the fundamental solution Kε(x,y)Kε(x,y) of the equation
−∂∂xi(aij(xε)∂∂xjuε)=f(x),−∂∂xi(aij(xε)∂∂xjuε)=f(x),
specified on the whole space RnRn, n>2n>2, as ε→0ε→0. The coefficients aij(y)aij(y) are periodic functions which satisfy the conditions of ellipticity, symmetry, and infinite smoothness.
The main result is the construction of the asymptotics of Kε(x,y)Kε(x,y) in the form
Kε(x,y)=M∑s=0εsΦs(x−y,xε,yε)+εM+1RM(x,y,ε),Kε(x,y)=M∑s=0εsΦs(x−y,xε,yε)+εM+1RM(x,y,ε),
where MM is an arbitrary positive integer, the Φs(x,y,z)Φs(x,y,z) are homogeneous of degree −s−n+2−s−n+2 in the first argument and periodic in the remaining arguments, and for the remainder term RM(x,y,ε)RM(x,y,ε) on the set |x−y|>δ|x−y|>δ, δ>0δ>0, the estimate
|RM(x,y,ε)|<CM(δ)|x−y|M+n−1|RM(x,y,ε)|<CM(δ)|x−y|M+n−1
holds, where the constants CM(δ)CM(δ) are independent of xx, yy, and εε.
Figures: 1.
Bibliography: 9 titles.
Citation:
E. V. Sevost'yanova, “An asymptotic expansion of the solution of a second order elliptic equation with periodic rapidly oscillating coefficients”, Math. USSR-Sb., 43:2 (1982), 181–198
\Bibitem{Sev81}
\by E.~V.~Sevost'yanova
\paper An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients
\jour Math. USSR-Sb.
\yr 1982
\vol 43
\issue 2
\pages 181--198
\mathnet{http://mi.mathnet.ru/eng/sm2382}
\crossref{https://doi.org/10.1070/SM1982v043n02ABEH002444}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=622145}
\zmath{https://zbmath.org/?q=an:0494.35019|0469.35024}
Linking options:
https://www.mathnet.ru/eng/sm2382
https://doi.org/10.1070/SM1982v043n02ABEH002444
https://www.mathnet.ru/eng/sm/v157/i2/p204
This publication is cited in the following 41 articles:
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
Kirill Cherednichenko, Igor Velčić, Josip Žubrinić, “Operator-norm resolvent estimates for thin elastic periodically heterogeneous rods in moderate contrast”, Calc. Var., 62:5 (2023)
Cherednichenko K., D'Onofrio S., “Operator-Norm Homogenisation Estimates For the System of Maxwell Equations on Periodic Singular Structures”, Calc. Var. Partial Differ. Equ., 61:2 (2022), 67
M. A. Dorodnyi, “Operator error estimates for homogenization of the nonstationary Schrödinger-type equations: sharpness of the results”, Applicable Analysis, 101:16 (2022), 5582
T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518
M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703
M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054
Shu Gu, Jinping Zhuge, “Periodic homogenization of Green's functions for Stokes systems”, Calc. Var., 58:3 (2019)
Cherednichenko K., Waurick M., “Resolvent Estimates in Homogenisation of Periodic Problems of Fractional Elasticity”, J. Differ. Equ., 264:6 (2018), 3811–3835
Weisheng Niu, Zhongwei Shen, Yao Xu, “Convergence rates and interior estimates in homogenization of higher order elliptic systems”, Journal of Functional Analysis, 274:8 (2018), 2356
K. Cherednichenko, S. D'Onofrio, “Operator-Norm Convergence Estimates for Elliptic Homogenization Problems on Periodic Singular Structures”, J Math Sci, 232:4 (2018), 558
V. V. Zhikov, S. E. Pastukhova, “Asimptotika fundamentalnogo resheniya dlya uravneniya diffuzii v periodicheskoi srede na bolshikh vremenakh i ee primenenie k otsenkam teorii usredneniya”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 63, no. 2, Rossiiskii universitet druzhby narodov, M., 2017, 223–246
Nikita N. Senik, “Homogenization for Non-self-adjoint Periodic Elliptic Operators on an Infinite Cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874
Tatiana Suslina, “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, Journal of Mathematical Analysis and Applications, 446:2 (2017), 1466
V. V. Zhikov, S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511
N. Th. Varopoulos, “The central limit theorem in Lipschitz domains”, Boll Unione Mat Ital, 7:2 (2014), 103
S. E. Pastukhova, “Approximations of the operator exponential in a periodic diffusion problem with drift”, Sb. Math., 204:2 (2013), 280–306
S. E. Pastukhova, “Approximations of the Resolvent for a Non–Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients”, Math. Notes, 94:1 (2013), 127–145
Cardone G. Pastukhova S.E. Perugia C., “Estimates in Homogenization of Degenerate Elliptic Equations by Spectral Method”, Asymptotic Anal., 81:3-4 (2013), 189–209
C.E.. Kenig, Fanghua Lin, Zhongwei Shen, “Periodic Homogenization of Green and Neumann Functions”, Commun. Pur. Appl. Math, 2013, n/a