Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 43, Issue 2, Pages 181–198
DOI: https://doi.org/10.1070/SM1982v043n02ABEH002444
(Mi sm2382)
 

This article is cited in 41 scientific papers (total in 41 papers)

An asymptotic expansion of the solution of a second order elliptic equation with periodic rapidly oscillating coefficients

E. V. Sevost'yanova
References:
Abstract: This paper studies the asymptotic behavior of the fundamental solution Kε(x,y)Kε(x,y) of the equation
xi(aij(xε)xjuε)=f(x),xi(aij(xε)xjuε)=f(x),
specified on the whole space RnRn, n>2n>2, as ε0ε0. The coefficients aij(y)aij(y) are periodic functions which satisfy the conditions of ellipticity, symmetry, and infinite smoothness.
The main result is the construction of the asymptotics of Kε(x,y)Kε(x,y) in the form
Kε(x,y)=Ms=0εsΦs(xy,xε,yε)+εM+1RM(x,y,ε),Kε(x,y)=Ms=0εsΦs(xy,xε,yε)+εM+1RM(x,y,ε),
where MM is an arbitrary positive integer, the Φs(x,y,z)Φs(x,y,z) are homogeneous of degree sn+2sn+2 in the first argument and periodic in the remaining arguments, and for the remainder term RM(x,y,ε)RM(x,y,ε) on the set |xy|>δ|xy|>δ, δ>0δ>0, the estimate
|RM(x,y,ε)|<CM(δ)|xy|M+n1|RM(x,y,ε)|<CM(δ)|xy|M+n1
holds, where the constants CM(δ)CM(δ) are independent of xx, yy, and εε.
Figures: 1.
Bibliography: 9 titles.
Received: 28.03.1980
Bibliographic databases:
UDC: 517.946
MSC: Primary 35J15, 35B40; Secondary 35J05
Language: English
Original paper language: Russian
Citation: E. V. Sevost'yanova, “An asymptotic expansion of the solution of a second order elliptic equation with periodic rapidly oscillating coefficients”, Math. USSR-Sb., 43:2 (1982), 181–198
Citation in format AMSBIB
\Bibitem{Sev81}
\by E.~V.~Sevost'yanova
\paper An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients
\jour Math. USSR-Sb.
\yr 1982
\vol 43
\issue 2
\pages 181--198
\mathnet{http://mi.mathnet.ru/eng/sm2382}
\crossref{https://doi.org/10.1070/SM1982v043n02ABEH002444}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=622145}
\zmath{https://zbmath.org/?q=an:0494.35019|0469.35024}
Linking options:
  • https://www.mathnet.ru/eng/sm2382
  • https://doi.org/10.1070/SM1982v043n02ABEH002444
  • https://www.mathnet.ru/eng/sm/v157/i2/p204
  • This publication is cited in the following 41 articles:
    1. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Kirill Cherednichenko, Igor Velčić, Josip Žubrinić, “Operator-norm resolvent estimates for thin elastic periodically heterogeneous rods in moderate contrast”, Calc. Var., 62:5 (2023)  crossref
    3. Cherednichenko K., D'Onofrio S., “Operator-Norm Homogenisation Estimates For the System of Maxwell Equations on Periodic Singular Structures”, Calc. Var. Partial Differ. Equ., 61:2 (2022), 67  crossref  isi
    4. M. A. Dorodnyi, “Operator error estimates for homogenization of the nonstationary Schrödinger-type equations: sharpness of the results”, Applicable Analysis, 101:16 (2022), 5582  crossref
    5. T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518  crossref
    6. M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703  mathnet  crossref  mathscinet
    7. M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054  mathnet  crossref  isi  elib
    8. Shu Gu, Jinping Zhuge, “Periodic homogenization of Green's functions for Stokes systems”, Calc. Var., 58:3 (2019)  crossref
    9. Cherednichenko K., Waurick M., “Resolvent Estimates in Homogenisation of Periodic Problems of Fractional Elasticity”, J. Differ. Equ., 264:6 (2018), 3811–3835  crossref  mathscinet  zmath  isi
    10. Weisheng Niu, Zhongwei Shen, Yao Xu, “Convergence rates and interior estimates in homogenization of higher order elliptic systems”, Journal of Functional Analysis, 274:8 (2018), 2356  crossref
    11. K. Cherednichenko, S. D'Onofrio, “Operator-Norm Convergence Estimates for Elliptic Homogenization Problems on Periodic Singular Structures”, J Math Sci, 232:4 (2018), 558  crossref
    12. V. V. Zhikov, S. E. Pastukhova, “Asimptotika fundamentalnogo resheniya dlya uravneniya diffuzii v periodicheskoi srede na bolshikh vremenakh i ee primenenie k otsenkam teorii usredneniya”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 63, no. 2, Rossiiskii universitet druzhby narodov, M., 2017, 223–246  mathnet  crossref  mathscinet
    13. Nikita N. Senik, “Homogenization for Non-self-adjoint Periodic Elliptic Operators on an Infinite Cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874  crossref
    14. Tatiana Suslina, “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, Journal of Mathematical Analysis and Applications, 446:2 (2017), 1466  crossref
    15. V. V. Zhikov, S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. N. Th. Varopoulos, “The central limit theorem in Lipschitz domains”, Boll Unione Mat Ital, 7:2 (2014), 103  crossref
    17. S. E. Pastukhova, “Approximations of the operator exponential in a periodic diffusion problem with drift”, Sb. Math., 204:2 (2013), 280–306  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. S. E. Pastukhova, “Approximations of the Resolvent for a Non–Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients”, Math. Notes, 94:1 (2013), 127–145  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    19. Cardone G. Pastukhova S.E. Perugia C., “Estimates in Homogenization of Degenerate Elliptic Equations by Spectral Method”, Asymptotic Anal., 81:3-4 (2013), 189–209  crossref  mathscinet  zmath  isi
    20. C.E.. Kenig, Fanghua Lin, Zhongwei Shen, “Periodic Homogenization of Green and Neumann Functions”, Commun. Pur. Appl. Math, 2013, n/a  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:435
    Russian version PDF:117
    English version PDF:23
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025