Abstract:
A strongly inhomogeneous diffusion operator with drift depending on a small parameter εε is studied in the space L2(Rn). The strong inhomogeneity consists in that the coefficients of the operator are ε-periodic and, in addition, the drift vector is of the order of ε−1. As ε→0, approximations in the operator L2‑norm of order ε and ε2 are constructed for the resolvent of the operator. For each of these orders of approximation, an averaged diffusion operator is obtained. A spectral method based on the Bloch representation for an operator with periodic coefficients is used.
Keywords:
diffusion operator with drift, resolvent of an operator, averaged diffusion operator, Bloch representation for an operator, Sobolev space, Gelfand transformation.
Citation:
S. E. Pastukhova, “Approximations of the Resolvent for a Non–Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients”, Mat. Zametki, 94:1 (2013), 130–150; Math. Notes, 94:1 (2013), 127–145
\Bibitem{Pas13}
\by S.~E.~Pastukhova
\paper Approximations of the Resolvent for a Non--Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 1
\pages 130--150
\mathnet{http://mi.mathnet.ru/mzm10105}
\crossref{https://doi.org/10.4213/mzm10105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206074}
\zmath{https://zbmath.org/?q=an:06228535}
\elib{https://elibrary.ru/item.asp?id=20731763}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 1
\pages 127--145
\crossref{https://doi.org/10.1134/S0001434613070122}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323665000012}
\elib{https://elibrary.ru/item.asp?id=20456014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883388590}
Linking options:
https://www.mathnet.ru/eng/mzm10105
https://doi.org/10.4213/mzm10105
https://www.mathnet.ru/eng/mzm/v94/i1/p130
This publication is cited in the following 10 articles:
D. I. Borisov, “Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms”, Math. Notes, 113:1 (2023), 138–142
S. E. Pastukhova, “Resolvent Approximations in L2-Norm for Elliptic Operators Acting in a Perforated Space”, J Math Sci, 265:6 (2022), 1008
S. E. Pastukhova, “L2-Estimates for Homogenization of Diffusion Operators with Unbounded Nonsymmetric Matrices”, J Math Sci, 268:4 (2022), 473
S. E. Pastukhova, “Approximation of resolvents in homogenization of fourth-order elliptic operators”, Sb. Math., 212:1 (2021), 111–134
S. E. Pastukhova, “L2-approksimatsii rezolventy ellipticheskogo operatora v perforirovannom prostranstve”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, Rossiiskii universitet druzhby narodov, M., 2020, 314–334
Pastukhova S.E., “On Resolvent Approximations of Elliptic Differential Operators With Periodic Coefficients”, Appl. Anal., 2020
S. E. Pastukhova, “Homogenization Estimates for Singularly Perturbed Operators”, J Math Sci, 251:5 (2020), 724
S. E. Pastukhova, R. N. Tikhomirov, “Operator-type estimates in homogenization of elliptic equations with lower terms”, St. Petersburg Math. J., 29:5 (2018), 841–861
N. N. Senik, “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898
N. N. Senik, “On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder”, Funct. Anal. Appl., 50:1 (2016), 71–75