Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 1, Pages 130–150
DOI: https://doi.org/10.4213/mzm10105
(Mi mzm10105)
 

This article is cited in 10 scientific papers (total in 10 papers)

Approximations of the Resolvent for a Non–Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients

S. E. Pastukhova

Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
References:
Abstract: A strongly inhomogeneous diffusion operator with drift depending on a small parameter εε is studied in the space L2(Rn). The strong inhomogeneity consists in that the coefficients of the operator are ε-periodic and, in addition, the drift vector is of the order of ε1. As ε0, approximations in the operator L2‑norm of order ε and ε2 are constructed for the resolvent of the operator. For each of these orders of approximation, an averaged diffusion operator is obtained. A spectral method based on the Bloch representation for an operator with periodic coefficients is used.
Keywords: diffusion operator with drift, resolvent of an operator, averaged diffusion operator, Bloch representation for an operator, Sobolev space, Gelfand transformation.
Received: 23.07.2012
English version:
Mathematical Notes, 2013, Volume 94, Issue 1, Pages 127–145
DOI: https://doi.org/10.1134/S0001434613070122
Bibliographic databases:
Document Type: Article
UDC: 517.956.8
Language: Russian
Citation: S. E. Pastukhova, “Approximations of the Resolvent for a Non–Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients”, Mat. Zametki, 94:1 (2013), 130–150; Math. Notes, 94:1 (2013), 127–145
Citation in format AMSBIB
\Bibitem{Pas13}
\by S.~E.~Pastukhova
\paper Approximations of the Resolvent for a Non--Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 1
\pages 130--150
\mathnet{http://mi.mathnet.ru/mzm10105}
\crossref{https://doi.org/10.4213/mzm10105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206074}
\zmath{https://zbmath.org/?q=an:06228535}
\elib{https://elibrary.ru/item.asp?id=20731763}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 1
\pages 127--145
\crossref{https://doi.org/10.1134/S0001434613070122}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323665000012}
\elib{https://elibrary.ru/item.asp?id=20456014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883388590}
Linking options:
  • https://www.mathnet.ru/eng/mzm10105
  • https://doi.org/10.4213/mzm10105
  • https://www.mathnet.ru/eng/mzm/v94/i1/p130
  • This publication is cited in the following 10 articles:
    1. D. I. Borisov, “Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms”, Math. Notes, 113:1 (2023), 138–142  mathnet  crossref  crossref  mathscinet
    2. S. E. Pastukhova, “Resolvent Approximations in L2-Norm for Elliptic Operators Acting in a Perforated Space”, J Math Sci, 265:6 (2022), 1008  crossref
    3. S. E. Pastukhova, “L2-Estimates for Homogenization of Diffusion Operators with Unbounded Nonsymmetric Matrices”, J Math Sci, 268:4 (2022), 473  crossref
    4. S. E. Pastukhova, “Approximation of resolvents in homogenization of fourth-order elliptic operators”, Sb. Math., 212:1 (2021), 111–134  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. S. E. Pastukhova, “L2-approksimatsii rezolventy ellipticheskogo operatora v perforirovannom prostranstve”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, Rossiiskii universitet druzhby narodov, M., 2020, 314–334  mathnet  crossref
    6. Pastukhova S.E., “On Resolvent Approximations of Elliptic Differential Operators With Periodic Coefficients”, Appl. Anal., 2020  crossref  mathscinet  isi
    7. S. E. Pastukhova, “Homogenization Estimates for Singularly Perturbed Operators”, J Math Sci, 251:5 (2020), 724  crossref
    8. S. E. Pastukhova, R. N. Tikhomirov, “Operator-type estimates in homogenization of elliptic equations with lower terms”, St. Petersburg Math. J., 29:5 (2018), 841–861  mathnet  crossref  mathscinet  isi  elib
    9. N. N. Senik, “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898  crossref  mathscinet  zmath  isi  scopus
    10. N. N. Senik, “On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder”, Funct. Anal. Appl., 50:1 (2016), 71–75  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:675
    Full-text PDF :233
    References:106
    First page:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025