Citation:
S. E. Pastukhova, R. N. Tikhomirov, “Operator-type estimates in homogenization of elliptic equations with lower terms”, Algebra i Analiz, 29:5 (2017), 179–207; St. Petersburg Math. J., 29:5 (2018), 841–861
\Bibitem{PasTik17}
\by S.~E.~Pastukhova, R.~N.~Tikhomirov
\paper Operator-type estimates in homogenization of elliptic equations with lower terms
\jour Algebra i Analiz
\yr 2017
\vol 29
\issue 5
\pages 179--207
\mathnet{http://mi.mathnet.ru/aa1560}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3724642}
\elib{https://elibrary.ru/item.asp?id=29922123}
\transl
\jour St. Petersburg Math. J.
\yr 2018
\vol 29
\issue 5
\pages 841--861
\crossref{https://doi.org/10.1090/spmj/1518}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000440081600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051018900}
Linking options:
https://www.mathnet.ru/eng/aa1560
https://www.mathnet.ru/eng/aa/v29/i5/p179
This publication is cited in the following 8 articles:
D. I. Borisov, “Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms”, Math. Notes, 113:1 (2023), 138–142
S. A. Sergeev, “Asymptotic Solution of the Cauchy Problem with Localized Initial Data for a Wave Equation with Small Dispersion Effects”, Diff Equat, 58:10 (2022), 1376
S. E. Pastukhova, “Resolvent Approximations in L2-Norm for Elliptic Operators Acting in a Perforated Space”, J Math Sci, 265:6 (2022), 1008
D. I. Borisov, G. Cardone, G. A. Chechkin, Yu. O. Koroleva, “On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary”, Calc. Var. Partial Differ. Equ., 60:1 (2021), 48
S. E. Pastukhova, “$L^2$-approksimatsii rezolventy ellipticheskogo operatora v perforirovannom prostranstve”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, Rossiiskii universitet druzhby narodov, M., 2020, 314–334
S. E. Pastukhova, “On resolvent approximations of elliptic differential operators with locally periodic coefficients”, Lobachevskii J. Math., 41:5, SI (2020), 818–838
Pastukhova S.E., “On Resolvent Approximations of Elliptic Differential Operators With Periodic Coefficients”, Appl. Anal., 2020
S. E. Pastukhova, “L2-Estimates for Homogenization of Elliptic Operators”, J Math Sci, 244:4 (2020), 671