Citation:
M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in ${\mathbb R}^d$: Sharpness of the results”, Algebra i Analiz, 32:4 (2020), 3–136; St. Petersburg Math. J., 32:4 (2021), 605–703
\Bibitem{DorSus20}
\by M.~A.~Dorodnyi, T.~A.~Suslina
\paper Homogenization of the hyperbolic equations with periodic coefficients in ${\mathbb R}^d$: Sharpness of the results
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 4
\pages 3--136
\mathnet{http://mi.mathnet.ru/aa1712}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4167863}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 4
\pages 605--703
\crossref{https://doi.org/10.1090/spmj/1664}
Linking options:
https://www.mathnet.ru/eng/aa1712
https://www.mathnet.ru/eng/aa/v32/i4/p3
This publication is cited in the following 11 articles:
M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161
M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1
M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
D.I. Borisov, “Homogenization for operators with arbitrary perturbations in coefficients”, Journal of Differential Equations, 369 (2023), 41
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570
Dorodnyi M.A. Suslina T.A., “Homogenization of a Non-Stationary Periodic Maxwell System in the Case of Constant Permeability”, J. Differ. Equ., 307 (2022), 348–388
T. A. Suslina, “Homogenization of the Schrödinger-type equations: operator estimates with correctors”, Funct. Anal. Appl., 56:3 (2022), 229–234
M. A. Dorodnyi, T. A. Suslina, “Homogenization of nonstationary Maxwell system with constant magnetic permeability”, Funct. Anal. Appl., 55:2 (2021), 159–164
T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518