Abstract:
This paper gives a systematic treatment of two methods for obtaining operator estimates: the shift method and the spectral method. Though substantially different in mathematical technique and physical motivation, these methods produce basically the same results. Besides the classical formulation of the homogenization problem, other formulations of the problem are also considered: homogenization in perforated domains, the case of an unbounded diffusion matrix, non-self-adjoint evolution equations, and higher-order elliptic operators.
Bibliography: 62 titles.
Keywords:
shift method, integrated estimate, Steklov smoothing, periodicity, problem on the cell, asymptotics of the fundamental solution, spectral method, Bloch representation of an operator, Nash–Aronson estimate.
Yi-Sheng Lim, Josip Žubrinić, “An Operator-Asymptotic Approach to Periodic Homogenization for Equations of Linearized Elasticity”, Asymptotic Analysis, 2025
S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Metod osredneniya dlya zadach o kvaziklassicheskikh asimptotikakh”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy
matematicheskogo obrazovaniya, SMFN, 70, no. 1, Rossiiskii universitet druzhby narodov, M., 2024, 53–76
T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759
Yi-Sheng Lim, “A high-contrast composite with annular inclusions: Norm-resolvent asymptotics”, Journal of Mathematical Analysis and Applications, 539:1 (2024), 128462
M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1
S. E. Pastukhova, “Improved Homogenization Estimates for Higher-order Elliptic Operators in Energy Norms”, Lobachevskii J Math, 45:7 (2024), 3351
S. E. Pastukhova, “Error estimates taking account of correctors in homogenization of elliptic operators”, Sb. Math., 215:7 (2024), 932–952
Guillaume Bal, Thuyen Dang, “Topological Anderson insulators by homogenization theory”, Communications in Partial Differential Equations, 2024, 1
S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Homogenization Method for Problems on Quasiclassical Asymptotics”, J Math Sci, 2024
A. I. Mukhametrakhimova, “Operator estimates for non–periodic perforation along boundary: homogenized Dirichlet condition”, Ufa Math. J., 16:4 (2024), 83–93
S. E. Pastukhova, “L2-estimates of error in homogenization of parabolic equations with correctors taken into account”, SMFN, 69:1 (2023), 134
M. A. Dorodnyi, “High-frequency homogenization of nonstationary periodic equations”, Applicable Analysis, 2023, 1
Nikita N. Senik, “Homogenization for Locally Periodic Elliptic Problems on a Domain”, SIAM J. Math. Anal., 55:2 (2023), 849
Andrii Khrabustovskyi, “Operator estimates for the Neumann sieve problem”, Annali di Matematica, 2023
S. E. Pastukhova, “On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems”, Math. Notes, 114:3 (2023), 322–338
M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
A. A. Raev, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo operatora chetvertogo poryadka s singulyarnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 212–239
M. Dorodnyi, “High-Energy Homogenization of a Multidimensional Nonstationary Schrödinger Equation”, Russ. J. Math. Phys., 30:4 (2023), 480