Abstract:
In the space Rd, we consider matrix elliptic operators Lε of arbitrary even order 2m⩾4 with measurable ε-periodic coefficients, where ε is a small parameter. We construct an approximation to the resolvent of this operator with an error of the order of ε2 in the operator (L2→L2)-norm.
Keywords:
homogenization, approximation to the resolvent, higher-order elliptic system.
Citation:
S. E. Pastukhova, “On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems”, Mat. Zametki, 114:3 (2023), 370–389; Math. Notes, 114:3 (2023), 322–338
\Bibitem{Pas23}
\by S.~E.~Pastukhova
\paper On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 3
\pages 370--389
\mathnet{http://mi.mathnet.ru/mzm14045}
\crossref{https://doi.org/10.4213/mzm14045}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4658785}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 3
\pages 322--338
\crossref{https://doi.org/10.1134/S0001434623090055}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85174735385}
Linking options:
https://www.mathnet.ru/eng/mzm14045
https://doi.org/10.4213/mzm14045
https://www.mathnet.ru/eng/mzm/v114/i3/p370
This publication is cited in the following 3 articles:
S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Metod osredneniya dlya zadach o kvaziklassicheskikh asimptotikakh”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy
matematicheskogo obrazovaniya, SMFN, 70, no. 1, Rossiiskii universitet druzhby narodov, M., 2024, 53–76
S. E. Pastukhova, “Improved Homogenization Estimates for Higher-order Elliptic Operators in Energy Norms”, Lobachevskii J Math, 45:7 (2024), 3351
S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Homogenization Method for Problems on Quasiclassical Asymptotics”, J Math Sci, 2024