Citation:
T. A. Suslina, “Averaging of the stationary periodic Maxwell system”, Algebra i Analiz, 16:5 (2004), 162–244; St. Petersburg Math. J., 16:5 (2005), 863–922
\Bibitem{Sus04}
\by T.~A.~Suslina
\paper Averaging of the stationary periodic Maxwell system
\jour Algebra i Analiz
\yr 2004
\vol 16
\issue 5
\pages 162--244
\mathnet{http://mi.mathnet.ru/aa636}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2106671}
\zmath{https://zbmath.org/?q=an:1097.35028}
\transl
\jour St. Petersburg Math. J.
\yr 2005
\vol 16
\issue 5
\pages 863--922
\crossref{https://doi.org/10.1090/S1061-0022-05-00883-6}
Linking options:
https://www.mathnet.ru/eng/aa636
https://www.mathnet.ru/eng/aa/v16/i5/p162
This publication is cited in the following 32 articles:
S. E. Pastukhova, “Error estimates taking account of correctors in homogenization of elliptic operators”, Sb. Math., 215:7 (2024), 932–952
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
Dorodnyi M.A. Suslina T.A., “Homogenization of a Non-Stationary Periodic Maxwell System in the Case of Constant Permeability”, J. Differ. Equ., 307 (2022), 348–388
Cherednichenko K. D'Onofrio S., “Operator-Norm Homogenisation Estimates For the System of Maxwell Equations on Periodic Singular Structures”, Calc. Var. Partial Differ. Equ., 61:2 (2022), 67
S. E. Pastukhova, “Improved resolvent approximations in homogenization of second order operators with periodic coefficients”, Funct. Anal. Appl., 56:4 (2022), 310–319
S. E. Pastukhova, “Approximations of Resolvents of Second Order Elliptic Operators with Periodic Coefficients”, J Math Sci, 267:3 (2022), 382
T. A. Suslina, “Ob usrednenii statsionarnoi periodicheskoi sistemy Maksvella v ogranichennoi oblasti”, Funkts. analiz i ego pril., 53:1 (2019), 88–92
Suslina T.A., “Homogenization of the Stationary Maxwell System With Periodic Coefficients in a Bounded Domain”, Arch. Ration. Mech. Anal., 234:2 (2019), 453–507
T. A. Suslina, “Homogenization of a stationary periodic Maxwell system in a bounded domain with constant magnetic permeability”, St. Petersburg Math. J., 30:3 (2019), 515–544
M. Dorodnyi, T. A. Suslina, “Homogenization of a Nonstationary Model Equation
of Electrodynamics”, Math. Notes, 102:5 (2017), 645–663
S. E. Pastukhova, R. N. Tikhomirov, “Operator-type estimates in homogenization of elliptic equations with lower terms”, St. Petersburg Math. J., 29:5 (2018), 841–861
Zhang Ch., Bai Yu., Xu Sh., Yue X., “Homogenization For Chemical Vapor Infiltration Process”, Commun. Math. Sci., 15:4 (2017), 1021–1040
Senik N.N., “Homogenization For Non-Self-Adjoint Periodic Elliptic Operators on An Infinite Cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898
V. V. Zhikov, S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511
Xu Sh., Yue X., Zhang Ch., “Homogenization: In mathematics or physics?”, Discret. Contin. Dyn. Syst.-Ser. S, 9:5 (2016), 1575–1590
De Nittis G., Lein M., “The Perturbed Maxwell Operator as Pseudodifferential Operator”, Doc. Math., 19 (2014), 63–101
Zhang QiaoFu, Cui JunZhi, “Interior Holder and Gradient Estimates for the Homogenization of the Linear Elliptic Equations”, Sci. China-Math., 56:8 (2013), 1575–1584
Holloway Ch.L., Kuester E.F., “Corrections to the Classical Continuity Boundary Conditions at the Interface of a Composite Medium”, Photonics Nanostruct., 11:4 (2013), 397–422
Birman M.S., Suslina T.A., “Homogenization of Periodic Differential Operators as a Spectral Threshold Effect”, New Trends in Mathematical Physics, 2009, 667–683