Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 102, Issue 5, Pages 700–720
DOI: https://doi.org/10.4213/mzm11594
(Mi mzm11594)
 

This article is cited in 4 scientific papers (total in 4 papers)

Homogenization of a Nonstationary Model Equation of Electrodynamics

M. Dorodnyi, T. A. Suslina

Saint Petersburg State University
Full-text PDF (685 kB) Citations (4)
References:
Abstract: In L2(R3;C3), we consider a self-adjoint operator Lε, ε>0, generated by the differential expression curlη(x/ε)1curlν(x/ε)div. Here the matrix function η(x) with real entries and the real function ν(x) are periodic with respect to some lattice, are positive definite, and are bounded. We study the behavior of the operators cos(τL1/2ε) and L1/2εsin(τL1/2ε) for τR and small ε. It is shown that these operators converge to cos(τ(L0)1/2) and (L0)1/2sin(τ(L0)1/2), respectively, in the norm of the operators acting from the Sobolev space Hs (with a suitable s) to L2. Here L0 is an effective operator with constant coefficients. Error estimates are obtained and the sharpness of the result with respect to the type of operator norm is studied. The results are used for homogenizing the Cauchy problem for the model hyperbolic equation 2τvε=Lεvε, divvε=0, appearing in electrodynamics. We study the application to a nonstationary Maxwell system for the case in which the magnetic permeability is equal to 1 and the dielectric permittivity is given by the matrix η(x/ε).
Keywords: periodic differential operator, homogenization, operator error estimate, nonstationary Maxwell system.
Funding agency Grant number
Russian Science Foundation 17-11-01069
This work was supported by the Russian Science Foundation under grant 17-11-01069.
Received: 10.04.2017
English version:
Mathematical Notes, 2017, Volume 102, Issue 5, Pages 645–663
DOI: https://doi.org/10.1134/S0001434617110050
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: M. Dorodnyi, T. A. Suslina, “Homogenization of a Nonstationary Model Equation of Electrodynamics”, Mat. Zametki, 102:5 (2017), 700–720; Math. Notes, 102:5 (2017), 645–663
Citation in format AMSBIB
\Bibitem{DorSus17}
\by M.~Dorodnyi, T.~A.~Suslina
\paper Homogenization of a Nonstationary Model Equation
of Electrodynamics
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 5
\pages 700--720
\mathnet{http://mi.mathnet.ru/mzm11594}
\crossref{https://doi.org/10.4213/mzm11594}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3716505}
\elib{https://elibrary.ru/item.asp?id=30512312}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 5
\pages 645--663
\crossref{https://doi.org/10.1134/S0001434617110050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418838500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039450816}
Linking options:
  • https://www.mathnet.ru/eng/mzm11594
  • https://doi.org/10.4213/mzm11594
  • https://www.mathnet.ru/eng/mzm/v102/i5/p700
  • This publication is cited in the following 4 articles:
    1. M. A. Dorodnyi, T. A. Suslina, “Homogenization of a non-stationary periodic Maxwell system in the case of constant permeability”, J. Differ. Equ., 307 (2022), 348–388  crossref  mathscinet  isi
    2. M. A. Dorodnyi, T. A. Suslina, “Homogenization of nonstationary Maxwell system with constant magnetic permeability”, Funct. Anal. Appl., 55:2 (2021), 159–164  mathnet  crossref  crossref  isi  elib
    3. Yu. M. Meshkova, “On operator error estimates for homogenization of hyperbolic systems with periodic coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660  crossref  mathscinet  isi
    4. Yu. M. Meshkova, “On the Homogenization of Periodic Hyperbolic Systems”, Math. Notes, 105:6 (2019), 929–934  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:593
    Full-text PDF :72
    References:64
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025