Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2012, Volume 24, Issue 2, Pages 1–103 (Mi aa1274)  

This article is cited in 21 scientific papers (total in 21 papers)

Research Papers

Homogenization of parabolic and elliptic periodic operators in L2(Rd) with the first and second correctors taken into account

E. S. Vasilevskaya, T. A. Suslina

St. Petersburg State University, Faculty of Physics, St. Petersburg, Russia
References:
Received: 01.11.2011
English version:
St. Petersburg Mathematical Journal, 2013, Volume 24, Issue 2, Pages 185–261
DOI: https://doi.org/10.1090/S1061-0022-2013-01236-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. S. Vasilevskaya, T. A. Suslina, “Homogenization of parabolic and elliptic periodic operators in L2(Rd) with the first and second correctors taken into account”, Algebra i Analiz, 24:2 (2012), 1–103; St. Petersburg Math. J., 24:2 (2013), 185–261
Citation in format AMSBIB
\Bibitem{VasSus12}
\by E.~S.~Vasilevskaya, T.~A.~Suslina
\paper Homogenization of parabolic and elliptic periodic operators in $L_2(\mathbb R^d)$ with the first and second correctors taken into account
\jour Algebra i Analiz
\yr 2012
\vol 24
\issue 2
\pages 1--103
\mathnet{http://mi.mathnet.ru/aa1274}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013323}
\zmath{https://zbmath.org/?q=an:06208262}
\elib{https://elibrary.ru/item.asp?id=20730148}
\transl
\jour St. Petersburg Math. J.
\yr 2013
\vol 24
\issue 2
\pages 185--261
\crossref{https://doi.org/10.1090/S1061-0022-2013-01236-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000331547800001}
\elib{https://elibrary.ru/item.asp?id=20431538}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84873515858}
Linking options:
  • https://www.mathnet.ru/eng/aa1274
  • https://www.mathnet.ru/eng/aa/v24/i2/p1
  • This publication is cited in the following 21 articles:
    1. S. E. Pastukhova, “Error estimates taking account of correctors in homogenization of elliptic operators”, Sb. Math., 215:7 (2024), 932–952  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. S. E. Pastukhova, “L2-otsenki pogreshnosti usredneniya parabolicheskikh uravnenii s uchetom korrektorov”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 134–151  mathnet  crossref
    3. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    5. Senik N.N., “Homogenization For Locally Periodic Elliptic Operators”, J. Math. Anal. Appl., 505:2 (2022), 125581  crossref  mathscinet  isi
    6. S. E. Pastukhova, “Improved resolvent approximations in homogenization of second order operators with periodic coefficients”, Funct. Anal. Appl., 56:4 (2022), 310–319  mathnet  crossref  crossref
    7. S. E. Pastukhova, “Approximations of Resolvents of Second Order Elliptic Operators with Periodic Coefficients”, J Math Sci, 267:3 (2022), 382  crossref
    8. Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021  crossref  isi
    9. M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703  mathnet  crossref  mathscinet
    10. Suslina T.A., “Homogenization of Higher-Order Parabolic Systems in a Bounded Domain”, Appl. Anal., 98:1-2, SI (2019), 3–31  crossref  mathscinet  zmath  isi  scopus
    11. M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054  mathnet  crossref  isi  elib
    12. M. A. Dorodnyi, T. A. Suslina, “Spectral approach to homogenization of hyperbolic equations with periodic coefficients”, J. Differ. Equ., 264:12 (2018), 7463–7522  crossref  mathscinet  zmath  isi
    13. D. I. Borisov, A. I. Mukhametrakhimova, “The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes”, J Math Sci, 232:3 (2018), 283  crossref
    14. T. A. Suslina, “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523  crossref  mathscinet  zmath  isi  elib  scopus
    15. Pastukhova S.E., “Large-Time Asymptotics of the Fundamental Solution to a Periodic Diffusion Equation and Its Applications”, Proceedings of the International Conference Days on Diffraction (Dd) 2017, eds. Motygin O., Kiselev A., Goray L., Suslina T., Kazakov A., Kirpichnikova A., IEEE, 2017, 258–263  crossref  isi
    16. T. A. Suslina, “Homogenization of Schrödinger-Type equations”, Funct. Anal. Appl., 50:3 (2016), 241–246  mathnet  crossref  crossref  mathscinet  isi  elib
    17. Yu. M. Meshkova, T. A. Suslina, “Homogenization of initial boundary value problems for parabolic systems with periodic coefficients”, Appl. Anal., 95:8 (2016), 1736–1775  crossref  mathscinet  zmath  isi  elib  scopus
    18. Yu. M. Meshkova, T. A. Suslina, “Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems”, Funct. Anal. Appl., 49:1 (2015), 72–76  mathnet  crossref  crossref  zmath  isi  elib
    19. S. E. Pastukhova, “Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients”, Funct. Anal. Appl., 48:3 (2014), 183–197  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    20. S. E. Pastukhova, “Approximations of the operator exponential in a periodic diffusion problem with drift”, Sb. Math., 204:2 (2013), 280–306  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:636
    Full-text PDF :155
    References:82
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025