Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2014, Volume 48, Issue 3, Pages 34–51
DOI: https://doi.org/10.4213/faa3155
(Mi faa3155)
 

This article is cited in 12 scientific papers (total in 12 papers)

Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients

S. E. Pastukhova

Moscow Institute of Radio-Engineering, Electronics and Automation
References:
Abstract: A multiscale homogenization estimate for a parabolic diffusion equation under minimal regularity conditions is proved. This makes it possible to treat the result as an estimate in the operator norm for the difference of the operator exponentials of the initial and homogenized equations.
Keywords: homogenization, operator-type estimates, locally periodic and multiscale coefficients, shift parameters.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00192а
Russian Science Foundation 14-11-00398
Received: 03.09.2012
English version:
Functional Analysis and Its Applications, 2014, Volume 48, Issue 3, Pages 183–197
DOI: https://doi.org/10.1007/s10688-014-0060-1
Bibliographic databases:
Document Type: Article
UDC: 517.97
Language: Russian
Citation: S. E. Pastukhova, “Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients”, Funktsional. Anal. i Prilozhen., 48:3 (2014), 34–51; Funct. Anal. Appl., 48:3 (2014), 183–197
Citation in format AMSBIB
\Bibitem{Pas14}
\by S.~E.~Pastukhova
\paper Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 3
\pages 34--51
\mathnet{http://mi.mathnet.ru/faa3155}
\crossref{https://doi.org/10.4213/faa3155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3494719}
\zmath{https://zbmath.org/?q=an:06410499}
\elib{https://elibrary.ru/item.asp?id=22834186}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 3
\pages 183--197
\crossref{https://doi.org/10.1007/s10688-014-0060-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000342060400004}
\elib{https://elibrary.ru/item.asp?id=23994805}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908070504}
Linking options:
  • https://www.mathnet.ru/eng/faa3155
  • https://doi.org/10.4213/faa3155
  • https://www.mathnet.ru/eng/faa/v48/i3/p34
  • This publication is cited in the following 12 articles:
    1. S. E. Pastukhova, “L2-Estimates of Error in Homogenization of Parabolic Equations with Correctors Taken Into Account”, J Math Sci, 2024  crossref
    2. S. E. Pastukhova, “L2-otsenki pogreshnosti usredneniya parabolicheskikh uravnenii s uchetom korrektorov”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 134–151  mathnet  crossref
    3. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. S. E. Pastukhova, “Homogenization Estimates for Parabolic Equations with Correctors”, J Math Sci, 276:1 (2023), 137  crossref
    5. S. E. Pastukhova, “Resolvent Approximations in L2-Norm for Elliptic Operators Acting in a Perforated Space”, J Math Sci, 265:6 (2022), 1008  crossref
    6. Pastukhova S.E., “On Resolvent Approximations of Elliptic Differential Operators With Locally Periodic Coefficients”, Lobachevskii J. Math., 41:5, SI (2020), 818–838  crossref  mathscinet  zmath  isi
    7. Pastukhova S.E., “On Resolvent Approximations of Elliptic Differential Operators With Periodic Coefficients”, Appl. Anal., 2020  crossref  mathscinet  isi  scopus
    8. S. E. Pastukhova, “Homogenization Estimates for Singularly Perturbed Operators”, J Math Sci, 251:5 (2020), 724  crossref
    9. S. E. Pastukhova, “The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization”, Sb. Math., 207:3 (2016), 418–443  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. V. V. Zhikov, S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Pastukhova S.E., “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95:7, SI (2016), 1449–1466  crossref  mathscinet  zmath  isi  elib  scopus
    12. S. E. Pastukhova, R. N. Tikhomirov, “Error Estimates of Homogenization in the Neumann Boundary Problem for an Elliptic Equation with Multiscale Coefficients”, J Math Sci, 216:2 (2016), 325  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:694
    Full-text PDF :347
    References:99
    First page:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025