Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2014, Volume 48, Issue 3, Pages 52–62
DOI: https://doi.org/10.4213/faa3150
(Mi faa3150)
 

This article is cited in 14 scientific papers (total in 14 papers)

“Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom

B. I. Suleimanov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa
References:
Abstract: We construct a solution of an analogue of the Schrödinger equation for the Hamiltonian $ H_1 (z, t, q_1, q_2, p_1, p_2) $ corresponding to the second equation $P_1^2$ in the Painlevé I hierarchy. This solution is obtained by an explicit change of variables from a solution of systems of linear equations whose compatibility condition is the ordinary differential equation $P_1^2$ with respect to $z$. This solution also satisfies an analogue of the Schrödinger equation corresponding to the Hamiltonian $ H_2 (z, t, q_1, q_2, p_1, p_2) $ of a Hamiltonian system with respect to $t$ compatible with $P_1^2$. A similar situation occurs for the $P_2^2$ equation in the Painlevé II hierarchy.
Keywords: quantization, Schrödinger equation, Hamiltonian, Painlevé equations, isomonodromic deformations, integrability.
Funding agency Grant number
Russian Science Foundation 14-11-00078
Received: 18.04.2012
English version:
Functional Analysis and Its Applications, 2014, Volume 48, Issue 3, Pages 198–207
DOI: https://doi.org/10.1007/s10688-014-0061-0
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: B. I. Suleimanov, ““Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom”, Funktsional. Anal. i Prilozhen., 48:3 (2014), 52–62; Funct. Anal. Appl., 48:3 (2014), 198–207
Citation in format AMSBIB
\Bibitem{Sul14}
\by B.~I.~Suleimanov
\paper ``Quantizations'' of Higher Hamiltonian Analogues of the Painlev\'e I and Painlev\'e II Equations with Two Degrees of Freedom
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 3
\pages 52--62
\mathnet{http://mi.mathnet.ru/faa3150}
\crossref{https://doi.org/10.4213/faa3150}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3494720}
\zmath{https://zbmath.org/?q=an:06410500}
\elib{https://elibrary.ru/item.asp?id=22834188}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 3
\pages 198--207
\crossref{https://doi.org/10.1007/s10688-014-0061-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000342060400005}
\elib{https://elibrary.ru/item.asp?id=23994872}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908079621}
Linking options:
  • https://www.mathnet.ru/eng/faa3150
  • https://doi.org/10.4213/faa3150
  • https://www.mathnet.ru/eng/faa/v48/i3/p52
  • This publication is cited in the following 14 articles:
    1. V. A. Pavlenko, “Solutions of Analogs of Time-Dependent Schrödinger Equations Corresponding to a Pair of $H^{2+2+1}$ Hamiltonian Systems in the Hierarchy of Degenerations of an Isomonodromic Garnier System”, Diff Equat, 60:1 (2024), 77  crossref
    2. V. A Pavlenko, “REShENIYa ANALOGOV VREMENNYKh URAVNENIY ShR¨EDINGERA, SOOTVETSTVUYuShchIKh PARE GAMIL'TONOVYKh SISTEM ????2+2+1 IERARKhII VYROZhDENIY IZOMONODROMNOY SISTEMY GARN'E”, Differencialʹnye uravneniâ, 60:1 (2024), 76  crossref
    3. Dan Dai, Wen-Gao Long, “Asymptotics and Total Integrals of the \(\textrm{P}_{\textrm I}^2\) Tritronquée Solution and Its Hamiltonian”, SIAM J. Math. Anal., 56:4 (2024), 5350  crossref
    4. V. A. Pavlenko, “Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of $H^{3+2}$ Hamiltonian systems”, Theoret. and Math. Phys., 212:3 (2022), 1181–1192  mathnet  crossref  crossref  mathscinet  adsnasa
    5. A. V. Domrin, M. A. Shumkin, B. I. Suleimanov, “Meromorphy of solutions for a wide class of ordinary differential equations of Painlevé type”, Journal of Mathematical Physics, 63:2 (2022)  crossref
    6. V. V. Tsegel'nik, “Properties of solutions of two second-order differential equations with the Painlevé property”, Theoret. and Math. Phys., 206:3 (2021), 315–320  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    7. B. I. Suleimanov, A. M. Shavlukov, “Integrable Abel equation and asymptotics of symmetry solutions of Korteweg-de Vries equation”, Ufa Math. J., 13:2 (2021), 99–106  mathnet  crossref  isi
    8. B. I. Suleimanov, “Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom”, St. Petersburg Math. J., 33:6 (2022), 995–1009  mathnet  crossref
    9. Adler V.E., “Nonautonomous Symmetries of the Kdv Equation and Step-Like Solutions”, J. Nonlinear Math. Phys., 27:3 (2020), 478–493  crossref  mathscinet  zmath  isi
    10. V. I. Kachalov, Yu. S. Fedorov, “O metode malogo parametra v nelineinoi matematicheskoi fizike”, Sib. elektron. matem. izv., 15 (2018), 1680–1686  mathnet  crossref
    11. V. A. Pavlenko, B. I. Suleimanov, “Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system $H^{2+1+1+1}$”, Ufa Math. J., 10:4 (2018), 92–102  mathnet  crossref  isi
    12. V. A. Pavlenko, B. I. Suleimanov, ““Quantizations” of isomonodromic Hamilton system $H^{\frac{7}{2}+1}$”, Ufa Math. J., 9:4 (2017), 97–107  mathnet  crossref  isi  elib
    13. D. P. Novikov, B. I. Suleimanov, ““Quantization” of an isomonodromic Hamiltonian Garnier system with two degrees of freedom”, Theoret. and Math. Phys., 187:1 (2016), 479–496  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    14. B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential”, Ufa Math. J., 8:3 (2016), 136–154  mathnet  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:820
    Full-text PDF :291
    References:123
    First page:41
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025