Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 212, Number 3, Pages 340–353
DOI: https://doi.org/10.4213/tmf10285
(Mi tmf10285)
 

This article is cited in 2 scientific papers (total in 2 papers)

Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of H3+2H3+2 Hamiltonian systems

V. A. Pavlenko

Institute of Mathematics with Computer Center, Ufa Science Center, Russian Academy of Sciences, Ufa, Russia
Full-text PDF (466 kB) Citations (2)
References:
Abstract: We construct joint 2×22×2 matrix solutions of the scalar linear evolution equations Ψsk=H3+2sk(s1,s2,[0]x1,x2,/x1,/x2)Ψ with times s1 and s2, which can be treated as analogues of the time-dependent Schrödinger equations. These equations correspond to the so-called H3+2 Hamiltonian system, which is a representative of a hierarchy of degenerations of the isomonodromic Garnier system described by Kimura in 1986. This compatible system of Hamiltonian ordinary differential equations is defined by two different Hamiltonians H3+2sk(s1,s2,q1,q2,p1,p2), k=1,2, with two degrees of freedom corresponding to the time variables s1 and s2. In terms of solutions of the linear systems of ordinary differential equations obtained by the isomonodromic deformation method, with the compatibility condition given by the Hamilton equations of the H3+2 system, the constructed compatible solutions of analogues of the time-dependent Schrödinger equations are presented explicitly. We also present a change of variables relating the matrix solutions of analogues of the time-dependent Schrödinger equations defined by two forms of the H3+2 system (rational and polynomial in coordinates). This system is a quantum analogue of the well-known canonical transformation relating the Hamilton equations of the H3+2 system in these two forms.
Keywords: Hamiltonian systems, Painlevé-type equations, time-dependent Schrödinger equations, isomonodromic deformation method.
Received: 12.03.2022
Revised: 06.05.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 212, Issue 3, Pages 1181–1192
DOI: https://doi.org/10.1134/S0040577922090021
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Pavlenko, “Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of H3+2 Hamiltonian systems”, TMF, 212:3 (2022), 340–353; Theoret. and Math. Phys., 212:3 (2022), 1181–1192
Citation in format AMSBIB
\Bibitem{Pav22}
\by V.~A.~Pavlenko
\paper Solutions of the~analogues of time-dependent Schr\"odinger equations corresponding to a~pair of $H^{3+2}$ Hamiltonian systems
\jour TMF
\yr 2022
\vol 212
\issue 3
\pages 340--353
\mathnet{http://mi.mathnet.ru/tmf10285}
\crossref{https://doi.org/10.4213/tmf10285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538844}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212.1181P}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 3
\pages 1181--1192
\crossref{https://doi.org/10.1134/S0040577922090021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85139182928}
Linking options:
  • https://www.mathnet.ru/eng/tmf10285
  • https://doi.org/10.4213/tmf10285
  • https://www.mathnet.ru/eng/tmf/v212/i3/p340
  • This publication is cited in the following 2 articles:
    1. V. A. Pavlenko, “Solutions of Analogs of Time-Dependent Schrödinger Equations Corresponding to a Pair of H2+2+1 Hamiltonian Systems in the Hierarchy of Degenerations of an Isomonodromic Garnier System”, Diff Equat, 60:1 (2024), 77  crossref
    2. V. A Pavlenko, “REShENIYa ANALOGOV VREMENNYKh URAVNENIY ShR¨EDINGERA, SOOTVETSTVUYuShchIKh PARE GAMIL'TONOVYKh SISTEM ????2+2+1 IERARKhII VYROZhDENIY IZOMONODROMNOY SISTEMY GARN'E”, Differencialʹnye uravneniâ, 60:1 (2024), 76  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :64
    References:45
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025