Abstract:
We study two Cauchy problems for nonlinear equations of the Sobolev type, of the form ∂∂t∂2u∂x23+Δu=|u|q and ∂∂tΔ⊥u+Δu=|u|q. We find conditions under which weak generalized local-in-time solutions of the Cauchy problem exist, and we also find conditions under which solutions blow up.
Keywords:
Sobolev-type nonlinear equations, blowup, local solvability, nonlinear capacity.
Citation:
M. O. Korpusov, R. S. Shafir, “On the blowup of solutions of the Cauchy problem for nonlinear equations of ferroelectricity theory”, TMF, 212:3 (2022), 327–339; Theoret. and Math. Phys., 212:3 (2022), 1169–1180
\Bibitem{KorSha22}
\by M.~O.~Korpusov, R.~S.~Shafir
\paper On the~blowup of solutions of the~Cauchy problem for nonlinear equations of ferroelectricity theory
\jour TMF
\yr 2022
\vol 212
\issue 3
\pages 327--339
\mathnet{http://mi.mathnet.ru/tmf10306}
\crossref{https://doi.org/10.4213/tmf10306}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538843}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212.1169K}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 3
\pages 1169--1180
\crossref{https://doi.org/10.1134/S004057792209001X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85139209545}
Linking options:
https://www.mathnet.ru/eng/tmf10306
https://doi.org/10.4213/tmf10306
https://www.mathnet.ru/eng/tmf/v212/i3/p327
This publication is cited in the following 3 articles:
M. O. Korpusov, R. S. Shafir, A. K. Matveeva, “Numerical Diagnostics of Solution Blow-Up in a Thermoelectric Semiconductor Model”, Comput. Math. and Math. Phys., 64:7 (2024), 1595
M. O. Korpusov, R. S. Shafir, A. K. Matveeva, “Numerical diagnostics of solution blow-up in a thermoelectric semiconductor model”, Comput. Math. Math. Phys., 64:7 (2024), 1595–1602
A. A. Kon'kov, “On the Absence of Solutions of Differential Inequalities with the ∞-Laplacian”, Diff Equat, 59:2 (2023), 243