Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 3, Pages 418–443
DOI: https://doi.org/10.1070/SM8486
(Mi sm8486)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization

S. E. Pastukhova

Moscow Technological University
References:
Abstract: We prove an L2-estimate for the homogenization of an elliptic operator Aε in a domain Ω with a Neumann boundary condition on the boundary Ω. The coefficients of the operator Aε are rapidly oscillating over different groups of variables with periods of different orders of smallness as ε0. We assume minimal regularity of the data, which makes it possible to impart to the result the meaning of an estimate in the operator (L2(Ω)L2(Ω))-norm for the difference of the resolvents of the original and homogenized problems. We also find an approximation to the resolvent of the original problem in the operator (L2(Ω)H1(Ω))-norm.
Bibliography: 24 titles.
Keywords: multiscale homogenization, operator estimates for homogenization, Steklov smoothing.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00192
Russian Science Foundation 14-11-00398
This research was supported by the Russian Foundation for Basic Research (grant no. 14-01-00192) and the Russian Science Foundation (project no. 14-11-00398).
Received: 04.02.2015 and 24.05.2015
Bibliographic databases:
Document Type: Article
UDC: 517.956.8
MSC: Primary 35B27; Secondary 35J57
Language: English
Original paper language: Russian
Citation: S. E. Pastukhova, “The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization”, Sb. Math., 207:3 (2016), 418–443
Citation in format AMSBIB
\Bibitem{Pas16}
\by S.~E.~Pastukhova
\paper The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization
\jour Sb. Math.
\yr 2016
\vol 207
\issue 3
\pages 418--443
\mathnet{http://mi.mathnet.ru/eng/sm8486}
\crossref{https://doi.org/10.1070/SM8486}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507486}
\zmath{https://zbmath.org/?q=an:1350.35018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..418P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376442700006}
\elib{https://elibrary.ru/item.asp?id=25707820}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971236515}
Linking options:
  • https://www.mathnet.ru/eng/sm8486
  • https://doi.org/10.1070/SM8486
  • https://www.mathnet.ru/eng/sm/v207/i3/p111
  • This publication is cited in the following 4 articles:
    1. W. Niu, Zh. Shen, Ya. Xu, “Quantitative estimates in reiterated homogenization”, J. Funct. Anal., 279:11 (2020), 108759  crossref  mathscinet  zmath  isi
    2. J. Wang, J. Zhao, “Convergence rates of solutions for elliptic reiterated homogenization problems”, Indian J. Pure Appl. Math., 51:3 (2020), 839–856  crossref  mathscinet  zmath  isi
    3. D. I. Borisov, A. I. Mukhametrakhimova, “The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes”, J Math Sci, 232:3 (2018), 283  crossref
    4. S. E. Pastukhova, R. N. Tikhomirov, “Error Estimates of Homogenization in the Neumann Boundary Problem for an Elliptic Equation with Multiscale Coefficients”, J Math Sci, 216:2 (2016), 325  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:602
    Russian version PDF:171
    English version PDF:30
    References:96
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025