Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 1, Pages 88–93
DOI: https://doi.org/10.4213/faa3177
(Mi faa3177)
 

This article is cited in 9 scientific papers (total in 9 papers)

Brief communications

Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems

Yu. M. Meshkovaa, T. A. Suslinab

a Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
b St. Petersburg State University, Faculty of Physics
Full-text PDF (171 kB) Citations (9)
References:
Abstract: Let ORd be a bounded C1,1 domain. In L2(O;Cn) we consider strongly elliptic operators AD,ε and AN,ε given by the differential expression b(D)g(x/ε)b(D), ε>0, with Dirichlet and Neumann boundary conditions, respectively. Here g(x) is a bounded positive definite matrix-valued function assumed to be periodic with respect to some lattice and b(D) is a first-order differential operator. We find approximations of the operators exp(AD,εt) and exp(AN,εt) for fixed t>0 and small ε in the L2L2 and L2H1 operator norms with error estimates depending on ε and t. The results are applied to homogenize the solutions of initial boundary value problems for parabolic systems.
Keywords: homogenization of periodic differential operators, parabolic systems, initial boundary value problems, effective operator, corrector, operator error estimates.
Received: 07.02.2014
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 1, Pages 72–76
DOI: https://doi.org/10.1007/s10688-015-0087-y
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: Yu. M. Meshkova, T. A. Suslina, “Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems”, Funktsional. Anal. i Prilozhen., 49:1 (2015), 88–93; Funct. Anal. Appl., 49:1 (2015), 72–76
Citation in format AMSBIB
\Bibitem{MesSus15}
\by Yu.~M.~Meshkova, T.~A.~Suslina
\paper Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 1
\pages 88--93
\mathnet{http://mi.mathnet.ru/faa3177}
\crossref{https://doi.org/10.4213/faa3177}
\zmath{https://zbmath.org/?q=an:06485790}
\elib{https://elibrary.ru/item.asp?id=23421409}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 1
\pages 72--76
\crossref{https://doi.org/10.1007/s10688-015-0087-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351307000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924989511}
Linking options:
  • https://www.mathnet.ru/eng/faa3177
  • https://doi.org/10.4213/faa3177
  • https://www.mathnet.ru/eng/faa/v49/i1/p88
  • This publication is cited in the following 9 articles:
    1. Jun Geng, Bojing Shi, “Quantitative estimates in almost periodic homogenization of parabolic systems”, Calc. Var., 64:1 (2025)  crossref
    2. N. N. Senik, “On homogenization for locally periodic elliptic and parabolic operators”, Funct. Anal. Appl., 54:1 (2020), 68–72  mathnet  crossref  crossref  mathscinet  isi  elib
    3. Geng J., Shen Zh., “Homogenization of Parabolic Equations With Non-Self-Similar Scales”, Arch. Ration. Mech. Anal., 236:1 (2020), 145–188  crossref  mathscinet  isi  scopus
    4. W. Niu, Ya. Xu, “A refined convergence result in homogenization of second order parabolic systems”, J. Differ. Equ., 266:12 (2019), 8294–8319  crossref  mathscinet  zmath  isi  scopus
    5. W. Niu, Ya. Xu, “Convergence rates in homogenization of higher-order parabolic systems”, Discret. Contin. Dyn. Syst., 38:8 (2018), 4203–4229  crossref  mathscinet  zmath  isi  scopus
    6. J. Geng, Zh. Shen, “Convergence rates in parabolic homogenization with time-dependent periodic coefficients”, J. Funct. Anal., 272:5 (2017), 2092–2113  crossref  mathscinet  zmath  isi  scopus
    7. Yu. M. Meshkova, T. A. Suslina, “Two-parametric error estimates in homogenization of second-order elliptic systems in Rd”, Appl. Anal., 95:7 (2016), 1413–1448  crossref  mathscinet  zmath  isi  elib  scopus
    8. Yu. M. Meshkova, T. A. Suslina, “Homogenization of initial boundary value problems for parabolic systems with periodic coefficients”, Appl. Anal., 95:8 (2016), 1736–1775  crossref  mathscinet  zmath  isi  elib  scopus
    9. T. A. Suslina, “Homogenization of elliptic operators with periodic coefficients depending on the spectral parameter”, St. Petersburg Math. J., 27:4 (2016), 651–708  mathnet  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:679
    Full-text PDF :188
    References:118
    First page:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025