Abstract:
Let O⊂Rd be a bounded C1,1 domain. In L2(O;Cn) we consider strongly elliptic operators AD,ε and AN,ε
given by the differential expression b(D)∗g(x/ε)b(D),
ε>0, with Dirichlet and Neumann boundary conditions, respectively. Here g(x) is a bounded positive definite matrix-valued function assumed to be periodic with respect to some lattice and b(D) is a first-order differential operator. We find approximations of the operators
exp(−AD,εt) and exp(−AN,εt) for fixed t>0 and small ε
in the L2→L2 and L2→H1 operator norms with error estimates depending on ε and t. The results are applied to homogenize the solutions of initial boundary value problems for parabolic systems.
Keywords:
homogenization of periodic differential operators, parabolic systems, initial boundary value problems, effective operator, corrector, operator error estimates.
Citation:
Yu. M. Meshkova, T. A. Suslina, “Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems”, Funktsional. Anal. i Prilozhen., 49:1 (2015), 88–93; Funct. Anal. Appl., 49:1 (2015), 72–76
\Bibitem{MesSus15}
\by Yu.~M.~Meshkova, T.~A.~Suslina
\paper Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 1
\pages 88--93
\mathnet{http://mi.mathnet.ru/faa3177}
\crossref{https://doi.org/10.4213/faa3177}
\zmath{https://zbmath.org/?q=an:06485790}
\elib{https://elibrary.ru/item.asp?id=23421409}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 1
\pages 72--76
\crossref{https://doi.org/10.1007/s10688-015-0087-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351307000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924989511}
Linking options:
https://www.mathnet.ru/eng/faa3177
https://doi.org/10.4213/faa3177
https://www.mathnet.ru/eng/faa/v49/i1/p88
This publication is cited in the following 9 articles:
Jun Geng, Bojing Shi, “Quantitative estimates in almost periodic homogenization of parabolic systems”, Calc. Var., 64:1 (2025)
N. N. Senik, “On homogenization for locally periodic elliptic and parabolic operators”, Funct. Anal. Appl., 54:1 (2020), 68–72
Geng J., Shen Zh., “Homogenization of Parabolic Equations With Non-Self-Similar Scales”, Arch. Ration. Mech. Anal., 236:1 (2020), 145–188
W. Niu, Ya. Xu, “A refined convergence result in homogenization of second order parabolic systems”, J. Differ. Equ., 266:12 (2019), 8294–8319
W. Niu, Ya. Xu, “Convergence rates in homogenization of higher-order parabolic systems”, Discret. Contin. Dyn. Syst., 38:8 (2018), 4203–4229
J. Geng, Zh. Shen, “Convergence rates in parabolic homogenization with time-dependent periodic coefficients”, J. Funct. Anal., 272:5 (2017), 2092–2113
Yu. M. Meshkova, T. A. Suslina, “Two-parametric error estimates in homogenization of second-order elliptic systems in Rd”, Appl. Anal., 95:7 (2016), 1413–1448
Yu. M. Meshkova, T. A. Suslina, “Homogenization of initial boundary value problems for parabolic systems with periodic coefficients”, Appl. Anal., 95:8 (2016), 1736–1775
T. A. Suslina, “Homogenization of elliptic operators with periodic coefficients depending on the spectral parameter”, St. Petersburg Math. J., 27:4 (2016), 651–708