Аннотация:
Нелинейные нелокальные модели существуют во многих областях физики. Наиболее известными из них являются модели, обладающие PT-симметрией. Кроме PT-симметричных моделей активно исследуются нелокальные модели с обратным временем и/или координатой. Другие виды нелокальностей встречаются намного реже. Как правило, в работах, посвященых нелинейным нелокальным уравнениям, рассматриваются солитонные или квази-рациональные решения одного из этих уравнений.
В представленной нами работе рассмотрены нелокальные симметрии, которым удовлетворяют все уравнения из иерархии Абловица-Каупа-Ньюэлла-Сигура. На основании свойств решений, удовлетворяющих нелокальным редукциям уравнений из иерархии АКНС, предложена модификация тэта-функциональной формулы для функции Бейкера-Ахиезера. Найдены условия на параметры спектральных кривых, ассоциированных с многофазными решениями, не имеющих экспоненциального роста на бесконечности. Показано, что при выполнении данных условий происходит разделение переменных. Большинство утверждений нашей работы является верным и для солитонных и квази-рациональных решений, поскольку они являются предельными случаями многофазных.
Исследования были выполнены при финансовой поддержке РФФИ (грант №19-01-00734) и Министерства науки и высшего образования Российской Федерации (соглашение № FSRF-2020-0004).
Mark J. Ablowitz, Ziad H. Musslimani, Nicholas J. Ossi, “Inverse scattering transform for continuous and discrete space‐time‐shifted integrable equations”, Stud Appl Math, 2024
Baoqiang Xia, Ruguang Zhou, “Integrable nonlocal finite-dimensional Hamiltonian systems related to the Ablowitz-Kaup-Newell-Segur system”, Journal of Mathematical Physics, 65:8 (2024)
В. Б. Матвеев, А. О. Смирнов, “Метод Дубровина и цепочка Тода”, Алгебра и анализ, 34:6 (2022), 170–196; V. B. Matveev, A. O. Smirnov, “Dubrovin method and Toda lattice”, St. Petersburg Math. J., 34:6 (2023), 1019–1037
V. S. Gerdjikov, A. O. Smirnov, APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'21, 2522, APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'21, 2022, 030004