Аннотация:
Широко известная Паде-гипотеза (Padé conjecture), высказанная в 1961 году Г. Бейкером, Д. Гаммелем и Д. Уиллсом, утверждает, что для всякой мероморфной в единичном круге D функции f найдется бесконечная подпоследовательность ее диагональных аппроксимаций Паде, сходящаяся к f равномерно на компактах, лежащих в D и не содержащих полюсов f. В 2001 году Д. Любински указал мероморфную в D функцию, опровергающую Паде-гипотезу.
В работе указана функция, опровергающая голоморфный
вариант Паде-гипотезы и одновременно опровергающая
гипотезу Шталя (вариант Паде-гипотезы для
алгебраических функций).
Библиография: 20 названий.
Образец цитирования:
В. И. Буслаев, “О гипотезе Бейкера–Гаммеля–Уиллса в теории аппроксимаций
Паде”, Матем. сб., 193:6 (2002), 25–38; V. I. Buslaev, “On the Baker–Gammel–Wills conjecture in the theory of Padé approximants”, Sb. Math., 193:6 (2002), 811–823
Lubinsky D.S., “On Uniform Convergence of Diagonal Multipoint Pade Approximants For Entire Functions”, Constr. Approx., 49:1 (2019), 149–174
Doron S. Lubinsky, Applied and Numerical Harmonic Analysis, Topics in Classical and Modern Analysis, 2019, 241
В. И. Буслаев, “О непрерывных дробях с предельно периодическими коэффициентами”, Матем. сб., 209:2 (2018), 47–65; V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205
Д. Ш. Любински, “Точные индексы интерполяции, блуждающие полюсы и равномерная сходимость многоточечных аппроксимаций Паде”, Матем. сб., 209:3 (2018), 150–167; D. S. Lubinsky, “Exact interpolation, spurious poles, and uniform convergence of multipoint Padé approximants”, Sb. Math., 209:3 (2018), 432–448
В. И. Буслаев, “О теореме Ван Флека для предельно периодических непрерывных дробей общего вида”, Комплексный анализ и его приложения, Сборник статей. К 100-летию со дня рождения Бориса Владимировича Шабата, 85-летию со дня рождения Анатолия Георгиевича Витушкина и 85-летию со дня рождения Андрея Александровича Гончара, Труды МИАН, 298, МАИК «Наука/Интерпериодика», М., 2017, 75–100; V. I. Buslaev, “On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form”, Proc. Steklov Inst. Math., 298 (2017), 68–93
Doron S. Lubinsky, Analytic Number Theory, Approximation Theory, and Special Functions, 2014, 561
Buslaev V.I., “An Estimate of the Capacity of Singular Sets of Functions That Are Defined by Continued Fractions”, Anal. Math., 39:1 (2013), 1–27
Baratchart L. Yattselev M.L., “Pade Approximants to Certain Elliptic-Type Functions”, J. Anal. Math., 121 (2013), 31–86
Baratchart L., Stahl H., Yattselev M., “Weighted extremal domains and best rational approximation”, Adv Math, 229:1 (2012), 357–407
А. И. Аптекарев, В. И. Буслаев, А. Мартинес-Финкельштейн, С. П. Суетин, “Аппроксимации Паде, непрерывные дроби и ортогональные многочлены”, УМН, 66:6(402) (2011), 37–122; A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131
А. А. Гончар, Е. А. Рахманов, С. П. Суетин, “Аппроксимации Паде–Чебышёва для многозначных аналитических функций, вариация равновесной энергии и S-свойство стационарных компактов”, УМН, 66:6(402) (2011), 3–36; A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Padé–Chebyshev approximants of multivalued analytic functions, variation of equilibrium energy, and the S-property of stationary compact sets”, Russian Math. Surveys, 66:6 (2011), 1015–1048
Martinez-Finkelshtein A., Rakhmanov E.A., Suetin S.P., “Heine, Hilbert, Pade, Riemann, and Stieltjes: John Nuttall's Work 25 Years Later”, Recent Advances in Orthogonal Polynomials, Special Functions, and their Applications, Contemporary Mathematics, 578, eds. Arvesu J., Lagomasino G., Amer Mathematical Soc, 2011, 165–193
Д. В. Христофоров, “О явлении ложной интерполяции эллиптических функций диагональными аппроксимациями Паде”, Матем. заметки, 87:4 (2010), 604–615; D. V. Khristoforov, “On the Phenomenon of Spurious Interpolation of Elliptic Functions by Diagonal Padé Approximants”, Math. Notes, 87:4 (2010), 564–574
Baratchart L., Yattselev M., “Convergent Interpolation to Cauchy Integrals over Analytic Arcs with Jacobi-Type Weights”, International Mathematics Research Notices, 2010, no. 22, 4211–4275
С. П. Суетин, “Численный анализ некоторых характеристик предельного цикла свободного уравнения Ван дер Поля”, Совр. пробл. матем., 14, МИАН, М., 2010, 3–57; S. P. Suetin, “Numerical Analysis of Some Characteristics of the Limit Cycle of the Free van der Pol Equation”, Proc. Steklov Inst. Math., 278, suppl. 1 (2012), S1–S54
Derevyagin M., Derkach V., “Convergence of Diagonal Pade Approximants for a Class of Definitizable Functions”, Recent Advances in Operator Theory in Hilbert and Krein Spaces, Operator Theory Advances and Applications, 198, 2010, 97–124
С. П. Суетин, “О существовании нелинейных аппроксимаций Паде–Чебышёва для аналитических функций”, Матем. заметки, 86:2 (2009), 290–303; S. P. Suetin, “On the Existence of Nonlinear Padé–Chebyshev Approximations for Analytic Functions”, Math. Notes, 86:2 (2009), 264–275
Maxim Derevyagin, Vladimir Derkach, Recent Advances in Operator Theory in Hilbert and Krein Spaces, 2009, 97