Аннотация:
We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.
This research was done at the Udmurt State University and was supported by the Grant Program
of the Government of the Russian Federation for state support of scientific research conducted
under the supervision of leading scientists at Russian institutions of higher professional education
(Contract No11.G34.31.0039). The work of the first and the third authors was supported by the
Support grant of leading scientific schools NSh-2519.2012.1.
Поступила в редакцию: 01.09.2011 Принята в печать: 24.09.2011
Образец цитирования:
Sergey M. Ramodanov, Valentin A. Tenenev, Dmitry V. Treschev, “Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid”, Regul. Chaotic Dyn., 17:6 (2012), 547–558
\RBibitem{RamTenTre12}
\by Sergey M. Ramodanov, Valentin A. Tenenev, Dmitry V. Treschev
\paper Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 6
\pages 547--558
\mathnet{http://mi.mathnet.ru/rcd267}
\crossref{https://doi.org/10.1134/S1560354712060068}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3001100}
\zmath{https://zbmath.org/?q=an:06148383}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RCD....17..547R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312216300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876081373}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd267
https://www.mathnet.ru/rus/rcd/v17/i6/p547
Эта публикация цитируется в следующих 21 статьяx:
Alexander A. Kilin, Anna M. Gavrilova, Elizaveta M. Artemova, “Dynamics of an Elliptic Foil with an Attached Vortex in an Ideal Fluid: The Integrable Case”, Regul. Chaot. Dyn., 2024
Y. Qin, Z. Y. Zhang, W. H. Sha, R. Sun, “Self-propulsion of a submerged sphere due to coupling of its deformation and internal mass shift”, Physics of Fluids, 34:4 (2022)
Yury L. Karavaev, Anton V. Klekovkin, Ivan S. Mamaev, Valentin A. Tenenev, Evgeny V. Vetchanin, “A Simple Physical Model for Control of a Propellerless Aquatic Robot”, Journal of Mechanisms and Robotics, 14:1 (2022)
Mamaev I.S. Bizyaev I.A., “Dynamics of An Unbalanced Circular Foil and Point Vortices in An Ideal Fluid”, Phys. Fluids, 33:8 (2021), 087119
Li B., Zhang R., Zhang B., Yang Q., Guo Ch., “An Assisted Propulsion Device of Vessel Utilizing Wind Energy Based on Magnus Effect”, Appl. Ocean Res., 114 (2021), 102788
E. M. Artemova, E. V. Vetchanin, “Control of the motion of a circular cylinder in an ideal fluid using a source”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 30:4 (2020), 604–617
E. V. Vetchanin, “The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque”, Rus. J. Nonlin. Dyn., 15:1 (2019), 41–57
Alexey V. Borisov, Ivan S. Mamaev, Eugeny V. Vetchanin, “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502
А. А. Килин, А. И. Кленов, В. А. Тененев, “Управление движением тела с помощью внутренних масс в вязкой жидкости”, Компьютерные исследования и моделирование, 10:4 (2018), 445–460
Ivan S. Mamaev, Evgeny V. Vetchanin, “The Self-propulsion of a Foil with a Sharp Edge in a Viscous Fluid Under the Action of a Periodically Oscillating Rotor”, Regul. Chaotic Dyn., 23:7-8 (2018), 875–886
I. S. Mamaev, V. A. Tenenev, E. V. Vetchanin, “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Nelin. Dinam., 14:4 (2018), 473–494
А. Н. Нуриев, А. И. Юнусова, О. Н. Зайцева, “Моделирование перемещения клиновидного виброробота в вязкой жидкости при различных законах движения внутренней массы в пакете OpenFOAM”, Труды ИСП РАН, 29:1 (2017), 101–118
Vetchanin E.V. Kilin A.A., “Control of Body Motion in An Ideal Fluid Using the Internal Mass and the Rotor in the Presence of Circulation Around the Body”, J. Dyn. Control Syst., 23:2 (2017), 435–458
Yury L. Karavaev, Alexander A. Kilin, Anton V. Klekovkin, “Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot”, Regul. Chaotic Dyn., 21:7-8 (2016), 918–926
Anatolii I. Klenov, Alexander A. Kilin, “Influence of Vortex Structures on the Controlled Motion of an Above-water Screwless Robot”, Regul. Chaotic Dyn., 21:7-8 (2016), 927–938
Borisov A.V. Kuznetsov S.P. Mamaev I.S. Tenenev V.A., “Describing the Motion of a Body With An Elliptical Cross Section in a Viscous Uncompressible Fluid By Model Equations Reconstructed From Data Processing”, Tech. Phys. Lett., 42:9 (2016), 886–890
Vetchanin E.V. Kilin A.A., “Free and Controlled Motion of a Body With a Moving Internal Mass Through a Fluid in the Presence of Circulation Around the Body”, Dokl. Phys., 61:1 (2016), 32–36
Nuriev A.N., Zakharova O.S., Zaitseva O.N., Yunusova A.I., “The Study of the Wedge-Shaped Vibration-Driven Robot Motion in a Viscous Fluid Forced By Different Oscillation Laws of the Internal Mass”, 11Th International Conference on Mesh Methods For Boundry-Value Problems and Applications, IOP Conference Series-Materials Science and Engineering, 158, IOP Publishing Ltd, 2016, UNSP 012072
А. А. Килин, Е. В. Ветчанин, “Управление движением твердого тела в жидкости с помощью двух подвижных масс”, Нелинейная динам., 11:4 (2015), 633–645
Vladimir Dragović, Borislav Gajić, “Four-Dimensional Generalization of the Grioli Precession”, Regul. Chaotic Dyn., 19:6 (2014), 656–662