Аннотация:
In this paper we describe the results of experimental investigations of the motion of a screwless underwater robot controlled by rotating internal rotors. We present the results of comparison of the trajectories obtained with the results of numerical simulation using the model of an ideal fluid.
The work of Yu. L.Karavaev and A.V.Klekovkin (Introduction and Sections 2 and 3) was supported by the Russian Science Foundation (project No. 14-19-01303). The work of A. A.Kilin (Conclusion and Section 4) was supported by the Russian Foundation for Basic Research No. 15-08-09093-a.
Поступила в редакцию: 22.11.2016 Принята в печать: 08.12.2016
Образец цитирования:
Yury L. Karavaev, Alexander A. Kilin, Anton V. Klekovkin, “Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot”, Regul. Chaotic Dyn., 21:7-8 (2016), 918–926
\RBibitem{KarKilKle16}
\by Yury L. Karavaev, Alexander A. Kilin, Anton V. Klekovkin
\paper Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 7-8
\pages 918--926
\mathnet{http://mi.mathnet.ru/rcd236}
\crossref{https://doi.org/10.1134/S1560354716070133}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403091800013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015987229}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd236
https://www.mathnet.ru/rus/rcd/v21/i7/p918
Эта публикация цитируется в следующих 14 статьяx:
Felix Chernousko, Nikolay Bolotnik, Dynamics of Mobile Systems with Controlled Configuration, 2024, 255
А. В. Клековкин, Ю. Л. Караваев, А. А. Килин, А. В. Назаров, “Влияние хвостовых плавников на скорость водного робота, приводимого в движение внутренними подвижными массами”, Компьютерные исследования и моделирование, 16:4 (2024), 869–882
A. V. Klekovkin, Yu. L. Karavaev, I. S. Mamaev, “The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel”, Rus. J. Nonlin. Dyn., 19:2 (2023), 265–279
Yury L. Karavaev, Anton V. Klekovkin, Ivan S. Mamaev, Valentin A. Tenenev, Evgeny V. Vetchanin, “A Simple Physical Model for Control of a Propellerless Aquatic Robot”, Journal of Mechanisms and Robotics, 14:1 (2022)
Anton V. Klekovkin, Yury L. Karavaev, Ivan S. Mamaev, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1
А. В. Клековкин, “Моделирование движения безвинтового мобильного робота с неизменяемой формой оболочки управляемого с помощью вращения внутреннего ротора”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 30:4 (2020), 645–656
A. V. Borisov, E. V. Vetchanin, I. S. Mamaev, “Motion of a smooth foil in a fluid under the action of external periodic forces. II”, Russ. J. Math. Phys., 27:1 (2020), 1–17
Anton V. Klekovkin, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, Valentin A. Tenenev, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1
E. V. Vetchanin, “The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque”, Rus. J. Nonlin. Dyn., 15:1 (2019), 41–57
Felix L. Chernousko, “Locomotion of multibody robotic systems: dynamics and optimization”, Theor. Appl. Mech., 45:1 (2018), 17–33
Alexey V. Borisov, Sergey P. Kuznetsov, “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7-8 (2018), 803–820
I. S. Mamaev, V. A. Tenenev, E. V. Vetchanin, “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Nelin. Dinam., 14:4 (2018), 473–494
Lubica Mikova, Ivan Virgala, Michal Kelemen, Tomas Liptak, Darina Hroncova, “Micromachine for Locomotion Inside Pipe”, Komunikácie, 20:1 (2018), 55
Evgeny V. Vetchanin, Alexander A. Kilin, Ivan S. Mamaev, “Control of the Motion of a Helical Body in a Fluid Using Rotors”, Regul. Chaotic Dyn., 21:7-8 (2016), 874–884