Аннотация:
This paper presents the design of an aquatic robot actuated by one internal rotor. The robot
body has a cylindrical form with a base in the form of a symmetric airfoil with a sharp edge. For
this object, equations of motion are presented in the form of Kirchhoff equations for rigid body
motion in an ideal fluid, which are supplemented with viscous resistance terms. A prototype
of the aquatic robot with an internal rotor is developed. Using this prototype, experimental
investigations of motion in a fluid are carried out.
Ключевые слова:
mobile robot, aquatic robot, motion simulation.
The work of A. V. Klekovkin (Section 4) was supported by the Russian Science Foundation under grant
No. 21-71-30011, the work of Yu. L. Karavaev (Sections 2) was carried out within the framework of the
state assignment of the Ministry of Education and Science of Russia FZZN-2020-0011.
Поступила в редакцию: 16.01.2023 Принята в печать: 10.02.2023
Образец цитирования:
A. V. Klekovkin, Yu. L. Karavaev, I. S. Mamaev, “The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel”, Rus. J. Nonlin. Dyn., 19:2 (2023), 265–279
\RBibitem{KleKarMam23}
\by A. V. Klekovkin, Yu. L. Karavaev, I. S. Mamaev
\paper The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel
\jour Rus. J. Nonlin. Dyn.
\yr 2023
\vol 19
\issue 2
\pages 265--279
\mathnet{http://mi.mathnet.ru/nd852}
\crossref{https://doi.org/10.20537/nd230301}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd852
https://www.mathnet.ru/rus/nd/v19/i2/p265
Эта публикация цитируется в следующих 1 статьяx:
E. A. Mikishanina, “Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside”, Rus. J. Nonlin. Dyn., 20:1 (2024), 179–193