Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)
Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body
Аннотация:
This paper addresses the problem of a rigid body moving on a plane (a platform) whose motion is initiated by oscillations of a point mass relative to the body in the presence of the viscous friction force applied at a fixed point of the platform and having in one direction a small (or even zero) value and a large value in the transverse direction. This problem is analogous to that of a Chaplygin sleigh when the nonholonomic constraint prohibiting motions of the fixed point on the platform across the direction prescribed on it is replaced by viscous friction. We present numerical results which confirm correspondence between the phenomenology of complex dynamics of the model with a nonholonomic constraint and a system with viscous friction — phase portraits of attractors, bifurcation diagram, and Lyapunov exponents. In particular, we show the possibility of the platform’s motion being accelerated by oscillations of the internal mass, although, in contrast to the nonholonomic model, the effect of acceleration tends to saturation. We also show the possibility of chaotic dynamics related to strange attractors of equations for generalized velocities, which is accompanied by a two-dimensional random walk of the platform in a laboratory reference system. The results obtained may be of interest to applications in the context of the problem of developing robotic mechanisms for motion in a fluid under the action of the motions of internal masses.
The work of A.V. Borisov (Introduction and formulation of the equations of motion (Section 1)) was supported by the RFBR under grants No. 18-08-00999-a and 18-29-10051-mk. Numerical simulation and analysis of the results obtained (Sections 2–6) were carried out by A.V. Borisov and S.P. Kuznetsov within the framework of the RSF grant No. 15-12-20035.
Поступила в редакцию: 30.10.2018 Принята в печать: 28.11.2018
Образец цитирования:
Alexey V. Borisov, Sergey P. Kuznetsov, “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7-8 (2018), 803–820
\RBibitem{BorKuz18}
\by Alexey V. Borisov, Sergey P. Kuznetsov
\paper Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 7-8
\pages 803--820
\mathnet{http://mi.mathnet.ru/rcd368}
\crossref{https://doi.org/10.1134/S1560354718070018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000458183900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85061226885}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd368
https://www.mathnet.ru/rus/rcd/v23/i7/p803
Эта публикация цитируется в следующих 11 статьяx:
M. Z. Dosaev, L. A. Klimina, V. A. Samsonov, Yu. D. Selyutsky, “Plane-Parallel Motion of a Snake Robot in the Presence of Anisotropic Dry Friction and a Single Control Input”, J. Comput. Syst. Sci. Int., 61:5 (2022), 858
A. V. Borisov, A. V. Tsiganov, E. A. Mikishanina, “On inhomogeneous nonholonomic Bilimovich system”, Commun. Nonlinear Sci. Numer. Simul., 94 (2021), 105573
Alexander Kilin, Elena Pivovarova, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1
А. А. Килин, Е. Н. Пивоварова, “Неинтегрируемость задачи о качении сферического волчка по вибрирующей плоскости”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 30:4 (2020), 628–644
S. P. Kuznetsov, V. P. Kruglov, A. V. Borisov, “Chaplygin sleigh in the quadratic potential field”, EPL, 132:2 (2020), 20008
E. V. Vetchanin, I. S. Mamaev, “Asymptotic behavior in the dynamics of a smooth body in an ideal fluid”, Acta Mech., 231:11 (2020), 4529–4535
E. V. Vetchanin, “The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque”, Rus. J. Nonlin. Dyn., 15:1 (2019), 41–57
E. V. Vetchanin, E. A. Mikishanina, “Vibrational Stability of Periodic Solutions of the Liouville Equations”, Rus. J. Nonlin. Dyn., 15:3 (2019), 351–363
Andrey A. Ardentov, Yury L. Karavaev, Kirill S. Yefremov, “Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: the Problem of Experimental Realization”, Regul. Chaotic Dyn., 24:3 (2019), 312–328
А. В. Борисов, А. В. Цыганов, “Влияние эффектов Барнетта-Лондона и Эйнштейна-де Гааза на движение неголономной сферы Рауса”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 29:4 (2019), 583–598
A. V. Borisov, E. V. Vetchanin, I. S. Mamaev, “Motion of a smooth foil in a fluid under the action of external periodic forces. I”, Russ. J. Math. Phys., 26:4 (2019), 412–427