Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2018, том 23, выпуск 4, страницы 480–502
DOI: https://doi.org/10.1134/S1560354718040081
(Mi rcd335)
 

Эта публикация цитируется в 14 научных статьях (всего в 14 статьях)

Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation

Alexey V. Borisova, Ivan S. Mamaevba, Eugeny V. Vetchaninab

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Izhevsk State Technical University, ul. Studencheskaya 7, Izhevsk, 426069 Russia
Список литературы:
Аннотация: This paper addresses the problem of self-propulsion of a smooth profile in a medium with viscous dissipation and circulation by means of parametric excitation generated by oscillations of the moving internal mass. For the case of zero dissipation, using methods of KAM theory, it is shown that the kinetic energy of the system is a bounded function of time, and in the case of nonzero circulation the trajectories of the profile lie in a bounded region of the space. In the general case, using charts of dynamical regimes and charts of Lyapunov exponents, it is shown that the system can exhibit limit cycles (in particular, multistability), quasi-periodic regimes (attracting tori) and strange attractors. One-parameter bifurcation diagrams are constructed, and Neimark – Sacker bifurcations and period-doubling bifurcations are found. To analyze the efficiency of displacement of the profile depending on the circulation and parameters defining the motion of the internal mass, charts of values of displacement for a fixed number of periods are plotted. A hypothesis is formulated that, when nonzero circulation arises, the trajectories of the profile are compact. Using computer calculations, it is shown that in the case of anisotropic dissipation an unbounded growth of the kinetic energy of the system (Fermi-like acceleration) is possible.
Ключевые слова: self-propulsion in a fluid, motion with speed-up, parametric excitation, viscous dissipation, circulation, period-doubling bifurcation, Neimark – Sacker bifurcation, Poincaré map, chart of dynamical regimes, chart of Lyapunov exponents, strange att.
Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации 1.2404.2017/4.6
1.2405.2017/4.6
Российский фонд фундаментальных исследований 15-08-09093-a
The work of A.V. Borisov (Introduction and Section 1) was carried out within the framework of the state assignment to the Udmurt State University 1.2404.2017/4.6. The work of E.V. Vetchanin and I. S.Mamaev (Sections 2 and 3) was carried out within the framework of the state assignment to the Izhevsk State Technical University 1.2405.2017/4.6 and was supported by the RFBR grant No 15-08-09093-a.
Поступила в редакцию: 15.05.2018
Принята в печать: 19.06.2018
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Alexey V. Borisov, Ivan S. Mamaev, Eugeny V. Vetchanin, “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502
Цитирование в формате AMSBIB
\RBibitem{BorMamVet18}
\by Alexey V. Borisov, Ivan S. Mamaev, Eugeny V. Vetchanin
\paper Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 4
\pages 480--502
\mathnet{http://mi.mathnet.ru/rcd335}
\crossref{https://doi.org/10.1134/S1560354718040081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3836283}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000440806900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051117098}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd335
  • https://www.mathnet.ru/rus/rcd/v23/i4/p480
  • Эта публикация цитируется в следующих 14 статьяx:
    1. А. В. Клековкин, Ю. Л. Караваев, А. А. Килин, А. В. Назаров, “Влияние хвостовых плавников на скорость водного робота, приводимого в движение внутренними подвижными массами”, Компьютерные исследования и моделирование, 16:4 (2024), 869–882  mathnet  crossref
    2. L.A. Klimina, S.A. Golovanov, M.Z. Dosaev, Y.D. Selyutskiy, A.P. Holub, “Plane-parallel motion of a trimaran capsubot controlled with an internal flywheel”, International Journal of Non-Linear Mechanics, 150 (2023), 104341  crossref
    3. Sergey Golovanov, Liubov Klimina, Marat Dosaev, Yury Selyutskiy, Andrei Holub, 2022 16th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference), 2022, 1  crossref
    4. Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706  mathnet  crossref  mathscinet
    5. E. M. Artemova, E. V. Vetchanin, “Control of the motion of a circular cylinder in an ideal fluid using a source”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 30:4 (2020), 604–617  mathnet  crossref
    6. E. V. Vetchanin, I. S. Mamaev, “Asymptotic behavior in the dynamics of a smooth body in an ideal fluid”, Acta Mech., 231:11 (2020), 4529–4535  crossref  mathscinet  zmath  isi  scopus
    7. A. V. Borisov, E. V. Vetchanin, I. S. Mamaev, “Motion of a smooth foil in a fluid under the action of external periodic forces. II”, Russ. J. Math. Phys., 27:1 (2020), 1–17  crossref  mathscinet  zmath  isi  scopus
    8. E. V. Vetchanin, “The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque”, Rus. J. Nonlin. Dyn., 15:1 (2019), 41–57  mathnet  crossref  elib
    9. E. V. Vetchanin, E. A. Mikishanina, “Vibrational Stability of Periodic Solutions of the Liouville Equations”, Rus. J. Nonlin. Dyn., 15:3 (2019), 351–363  mathnet  crossref  mathscinet
    10. A. V. Borisov, E. V. Vetchanin, I. S. Mamaev, “Motion of a smooth foil in a fluid under the action of external periodic forces. I”, Russ. J. Math. Phys., 26:4 (2019), 412–427  crossref  mathscinet  zmath  isi  scopus
    11. Alexey V. Borisov, Ivan S. Mamaev, Evgeny V. Vetchanin, “Self-propulsion of a Smooth Body in a Viscous Fluid Under Periodic Oscillations of a Rotor and Circulation”, Regul. Chaotic Dyn., 23:7-8 (2018), 850–874  mathnet  crossref
    12. Ivan S. Mamaev, Evgeny V. Vetchanin, “The Self-propulsion of a Foil with a Sharp Edge in a Viscous Fluid Under the Action of a Periodically Oscillating Rotor”, Regul. Chaotic Dyn., 23:7-8 (2018), 875–886  mathnet  crossref  mathscinet
    13. I. S. Mamaev, V. A. Tenenev, E. V. Vetchanin, “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Nelin. Dinam., 14:4 (2018), 473–494  mathnet  crossref  elib
    14. Kilin A.A. Pivovarova E.N., “Chaplygin TOP With a Periodic Gyrostatic Moment”, Russ. J. Math. Phys., 25:4 (2018), 509–524  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:307
    Список литературы:63
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025