Typesetting math: 100%
Доклады Академии наук
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Докл. РАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Доклады Академии наук, 1986, том 287, номер 5, страницы 1071–1075 (Mi dan8652)  

Эта публикация цитируется в 69 научных статьях (всего в 69 статьях)

МАТЕМАТИКА

Теория Морса интегрируемых гамильтоновых систем

А. Т. Фоменко

Московский государственный университет имени М. В. Ломоносова
Статья представлена к публикации: С. П. Новиков
Поступило: 04.03.1985
Реферативные базы данных:
Тип публикации: Статья
УДК: 513:944
Образец цитирования: А. Т. Фоменко, “Теория Морса интегрируемых гамильтоновых систем”, Докл. АН СССР, 287:5 (1986), 1071–1075
Цитирование в формате AMSBIB
\RBibitem{Fom86}
\by А.~Т.~Фоменко
\paper Теория Морса интегрируемых гамильтоновых систем
\jour Докл. АН СССР
\yr 1986
\vol 287
\issue 5
\pages 1071--1075
\mathnet{http://mi.mathnet.ru/dan8652}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=839705}
\zmath{https://zbmath.org/?q=an:0623.58009}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/dan8652
  • https://www.mathnet.ru/rus/dan/v287/i5/p1071
  • Эта публикация цитируется в следующих 69 статьяx:
    1. Г. П. Пальшин, “Топология слоения Лиувилля в обобщенной задаче трех вихрей со связью”, Матем. сб., 215:5 (2024), 106–145  mathnet  crossref  mathscinet  zmath  adsnasa; G. P. Palshin, “Topology of the Liouville foliation in the generalized constrained three-vortex problem”, Sb. Math., 215:5 (2024), 667–702  crossref  isi
    2. К. Е. Тюрина, “Топологические инварианты некоторых бильярдных упорядоченных игр”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2024, № 3, 19–25  mathnet  crossref  elib; K. E. Turina, “Topological invariants of some ordered billiard games”, Moscow University Mathematics Bulletin, 79:3 (2024), 122–129  crossref
    3. М. К. Алтуев, В. А. Кибкало, “Топологический анализ псевдоевклидова волчка Эйлера при особых значениях параметров”, Матем. сб., 214:3 (2023), 54–70  mathnet  crossref  mathscinet  zmath  adsnasa; M. K. Altuev, V. A. Kibkalo, “Topological analysis of pseudo-Euclidean Euler top for special values of the parameters”, Sb. Math., 214:3 (2023), 334–348  crossref  isi
    4. В. А. Кибкало, “Параболичность вырожденных особенностей в осесимметричных системах Эйлера с гиростатом”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2023, № 1, 25–32  mathnet  crossref  zmath  elib; V. A. Kibkalo, “Parabolicity of degenerate singularities in axisymmetric Euler systems with a gyrostat”, Moscow University Mathematics Bulletin, 78:1 (2023), 28–36  crossref
    5. В. Н. Завьялов, “Биллиард с проскальзыванием на любой рациональный угол”, Матем. сб., 214:9 (2023), 3–26  mathnet  crossref  mathscinet  zmath  adsnasa; V. N. Zav'yalov, “Billiard with slipping by an arbitrary rational angle”, Sb. Math., 214:9 (2023), 1191–1211  crossref  isi
    6. А. Т. Фоменко, В. В. Ведюшкина, “Биллиарды и интегрируемые системы”, УМН, 78:5(473) (2023), 93–176  mathnet  crossref  mathscinet  zmath  adsnasa; A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  crossref  isi
    7. А. А. Кузнецова, “Моделирование вырожденных особенностей интегрируемых бильярдных систем бильярдными книжками”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2023, № 5, 3–10  mathnet  crossref  elib; A. A. Kuznetsova, “Modeling of degenerate peculiarities of integrable billiard systems by billiard books”, Moscow University Mathematics Bulletin, 78:5 (2023), 207–215  crossref
    8. А. Т. Фоменко, В. В. Ведюшкина, “Эволюционные силовые биллиарды”, Изв. РАН. Сер. матем., 86:5 (2022), 116–156  mathnet  crossref  mathscinet  zmath  adsnasa; A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979  crossref  isi
    9. Г. В. Белозеров, “Топология изоэнергетических 55-поверхностей трехмерного бильярда внутри трехосного эллипсоида с потенциалом Гука”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, № 6, 21–31  mathnet  crossref  mathscinet  zmath  elib; G. V. Belozerov, “Topology of 55-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential”, Moscow University Mathematics Bulletin, 77:6 (2022), 277–289  crossref
    10. В. В. Ведюшкина, В. А. Кибкало, “Биллиардные книжки малой сложности и реализация слоений Лиувилля интегрируемых систем”, Чебышевский сб., 23:1 (2022), 53–82  mathnet  crossref
    11. В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки реализуют все базы слоений Лиувилля интегрируемых гамильтоновых систем”, Матем. сб., 212:8 (2021), 89–150  mathnet  crossref  zmath  adsnasa; V. V. Vedyushkina, I. S. Kharcheva, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems”, Sb. Math., 212:8 (2021), 1122–1179  crossref  isi  elib
    12. В. В. Ведюшкина, “Топологический тип изоэнергетических поверхностей биллиардных книжек”, Матем. сб., 212:12 (2021), 3–19  mathnet  crossref  zmath  adsnasa; V. V. Vedyushkina, “Topological type of isoenergy surfaces of billiard books”, Sb. Math., 212:12 (2021), 1660–1674  crossref  isi
    13. В. А. Кибкало, А. Т. Фоменко, И. С. Харчева, “Реализация интегрируемых гамильтоновых систем бильярдными книжками”, Тр. ММО, 82, № 1, МЦНМО, М., 2021, 45–78  mathnet; V. A. Kibkalo, A. T. Fomenko, I. S. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc., 82 (2021), 37–64  crossref
    14. С. С. Николаенко, “Топологическая классификация некомпактных 3-атомов с действием окружности”, Чебышевский сб., 22:5 (2021), 185–197  mathnet  crossref
    15. И. Ф. Кобцев, “Эллиптический биллиард в поле потенциальных сил: классификация движений, топологический анализ”, Матем. сб., 211:7 (2020), 93–120  mathnet  crossref  mathscinet  zmath  adsnasa; I. F. Kobtsev, “An elliptic billiard in a potential force field: classification of motions, topological analysis”, Sb. Math., 211:7 (2020), 987–1013  crossref  isi  elib
    16. С. С. Николаенко, “Топологическая классификация гамильтоновых систем на двумерных некомпактных многообразиях”, Матем. сб., 211:8 (2020), 68–101  mathnet  crossref  mathscinet  zmath  adsnasa; S. S. Nikolaenko, “Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds”, Sb. Math., 211:8 (2020), 1127–1158  crossref  isi  elib
    17. Е. И. Антонов, И. К. Козлов, “Лиувиллева классификация интегрируемых геодезических потоков на проективной плоскости в потенциальном поле”, Чебышевский сб., 21:2 (2020), 10–25  mathnet  crossref
    18. Anna Kravchenko, Sergiy Maksymenko, “Automorphisms of cellular divisions of 22-sphere induced by functions with isolated critical points”, Журн. матем. физ., анал., геом., 16:2 (2020), 138–160  mathnet  crossref
    19. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые геодезические потоки на ориентируемых двумерных поверхностях и топологические биллиарды”, Изв. РАН. Сер. матем., 83:6 (2019), 63–103  mathnet  crossref  mathscinet  zmath  adsnasa; V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173  crossref  isi  elib
    20. И. М. Никонов, “Описание вырожденных двумерных особенностей с одной критической точкой”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2019, № 3, 5–15  mathnet  mathscinet  zmath; I. M. Nikonov, “Description of degenerate two-dimensional singularities with single critical point”, Moscow University Mathematics Bulletin, 74:3 (2019), 87–97  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:422
    PDF полного текста:147
    Список литературы:4
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025