Аннотация:
Для интегрируемых гамильтоновых систем с двумя степенями свободы рассматривается задача описания топологии слоения Лиувилля в 3-мерной некомпактной инвариантной окрестности особого слоя. При этом все особенности системы предполагаются невырожденными. В случае, когда все слои компактны, эта задача решена: известная теорема А. Т. Фоменко утверждает, что любая невырожденная 3-мерная особенность (3-атом) представляет собой $S^1$-расслоение специального вида (расслоение Зейферта) над двумерной особенностью (2-атомом). Тем самым задача топологической классификации 3-атомов сводится к существенно более простому вопросу классификации 2-атомов (т. е. особенностей слоений, задаваемых функциями Морса на двумерных поверхностях). Последний вопрос хорошо изучен в рамках теории А. Т. Фоменко топологической классификации интегрируемых систем.
В некомпактном случае запас всех 3-атомов становится существенно шире. Поэтому мы ограничиваемся рассмотрением только таких 3-атомов, которые удовлетворяют следующим условиям: полнота гамильтоновых потоков, порождаемых первыми интегралами системы, конечность числа орбит гамильтонова действия группы $\mathbb{R}^2$ на особом слое и существование среди них нестягиваемой орбиты. При этих условиях мы доказываем существование на 3-атоме гамильтонова локально свободного $S^1$-действия, сохраняющего слои слоения Лиувилля. В качестве следствия мы получаем некомпактный аналог теоремы А. Т. Фоменко и тем самым сводим задачу классификации некомпактных 3-атомов, удовлетворяющих перечисленным условиям, к аналогичной классификационной задаче для некомпактных 2-атомов, решённой нами ранее.
Исследование выполнено за счёт гранта Российского научного фонда (проект 17-11-01303).
Поступила в редакцию: 26.08.2021 Принята в печать: 21.12.2021
Тип публикации:
Статья
УДК:514.853+517.938.5
Образец цитирования:
С. С. Николаенко, “Топологическая классификация некомпактных 3-атомов с действием окружности”, Чебышевский сб., 22:5 (2021), 185–197
Г. П. Пальшин, “Топология слоения Лиувилля в обобщенной задаче трех вихрей со связью”, Матем. сб., 215:5 (2024), 106–145; G. P. Palshin, “Topology of the Liouville foliation in the generalized constrained three-vortex problem”, Sb. Math., 215:5 (2024), 667–702
Е. С. Агуреева, В. А. Кибкало, “Топологический анализ осесимметричной системы Жуковского в случае алгебры Ли $e(2,1)$”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2024, № 5, 3–16; E. S. Agureeva, V. A. Kibkalo, “Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra $e(2,1)$”, Moscow University Mathematics Bulletin, 79:5 (2024), 207–222
G. P. Palshin, “Topology of the Generalized Constrained Three-Vortex Problem at Zero Total Vortical Moment”, Lobachevskii J Math, 45:10 (2024), 5191
М. К. Алтуев, В. А. Кибкало, “Топологический анализ псевдоевклидова волчка Эйлера при особых значениях параметров”, Матем. сб., 214:3 (2023), 54–70; M. K. Altuev, V. A. Kibkalo, “Topological analysis of pseudo-Euclidean Euler top for special values of the parameters”, Sb. Math., 214:3 (2023), 334–348
В. А. Кибкало, “Первый класс Аппельрота псевдоевклидовой системы Ковалевской”, Чебышевский сб., 24:1 (2023), 69–88