Аннотация:
Изучаются матричные периодические эллиптические дифференциальные операторы Bε второго порядка в Rd с быстро осциллирующими (зависящими от x/ε) коэффициентами. Старшая часть оператора задается в факторизованной форме b(D)∗g(ε−1x)b(D), где g – периодическая ограниченная и положительно-определенная матрица-функция, а b(D) – матричный оператор первого порядка, символ которого есть матрица максимального ранга. В оператор включаются также члены первого и нулевого порядков с неограниченными коэффициентами. Рассматривается задача об усреднении в пределе малого периода. Для обобщенной резольвенты оператора Bε получена аппроксимация по операторной норме в L2(Rd;Cn) с погрешностью O(ε), а также аппроксимация с учетом корректора по операторной норме из L2(Rd;Cn) в H1(Rd;Cn) с погрешностью порядка ε. Общие результаты применяются к задачам усреднения для оператора Шредингера и двумерного оператора Паули, в которых потенциалы содержат сингулярные слагаемые.
Образец цитирования:
Т. А. Суслина, “Усреднение в классе Соболева H1(Rd) для периодических эллиптических дифференциальных операторов второго порядка при включении членов первого порядка”, Алгебра и анализ, 22:1 (2010), 108–222; St. Petersburg Math. J., 22:1 (2011), 81–162
\RBibitem{Sus10}
\by Т.~А.~Суслина
\paper Усреднение в~классе Соболева $H^1(\mathbb R^d)$ для периодических эллиптических дифференциальных операторов второго порядка при включении членов первого порядка
\jour Алгебра и анализ
\yr 2010
\vol 22
\issue 1
\pages 108--222
\mathnet{http://mi.mathnet.ru/aa1174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2641084}
\zmath{https://zbmath.org/?q=an:1223.35048}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 1
\pages 81--162
\crossref{https://doi.org/10.1090/S1061-0022-2010-01135-X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286864400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960964970}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1174
https://www.mathnet.ru/rus/aa/v22/i1/p108
Эта публикация цитируется в следующих 28 статьяx:
Т. А. Суслина, “Усреднение эллиптических и параболических уравнений с периодическими коэффициентами в ограниченной области при условии Неймана”, Изв. РАН. Сер. матем., 88:4 (2024), 84–167; T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759
Т. А. Суслина, “Теоретико-операторный подход к усреднению уравнений типа Шрёдингера с периодическими коэффициентами”, УМН, 78:6(474) (2023), 47–178; T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
Meshkova Yu.M., “On Operator Error Estimates For Homogenization of Hyperbolic Systems With Periodic Coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660
М. А. Дородный, Т. А. Суслина, “Усреднение гиперболических уравнений с периодическими коэффициентами в $\mathbb{R}^d$: точность результатов”, Алгебра и анализ, 32:4 (2020), 3–136; M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in ${\mathbb R}^d$: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703
Wang L., Xu Q., Zhou Sh., “L-P Neumann Problems in Homogenization of General Elliptic Operators”, Discret. Contin. Dyn. Syst., 40:8 (2020), 5019–5045
Meshkova Yu.M., “On Homogenization of the First Initial-Boundary Value Problem For Periodic Hyperbolic Systems”, Appl. Anal., 99:9 (2020), 1528–1563
Ю. М. Мешкова, “Усреднение периодических параболических систем по $L_2(\mathbb{R}^d)$-норме при учете корректора”, Алгебра и анализ, 31:4 (2019), 137–197; Yu. M. Meshkova, “Homogenization of periodic parabolic systems in the $ L_2(\mathbb{R}^d)$-norm with the corrector taken into account”, St. Petersburg Math. J., 31:4 (2020), 675–718
М. А. Дородный, “Усреднение периодических уравнений типа Шрёдингера при включении членов младшего порядка”, Алгебра и анализ, 31:6 (2019), 122–196; M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054
Ю. М. Мешкова, Т. А. Суслина, “Усреднение задачи Дирихле для эллиптических и параболических систем с периодическими коэффициентами”, Функц. анализ и его прил., 51:3 (2017), 87–93; Yu. M. Meshkova, T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients”, Funct. Anal. Appl., 51:3 (2017), 230–235
С. Е. Пастухова, Р. Н. Тихомиров, “Об операторных оценках усреднения для эллиптических уравнений с младшими членами”, Алгебра и анализ, 29:5 (2017), 179–207; S. E. Pastukhova, R. N. Tikhomirov, “Operator-type estimates in homogenization of elliptic equations with lower terms”, St. Petersburg Math. J., 29:5 (2018), 841–861
Ю. М. Мешкова, Т. А. Суслина, “Усреднение первой начально-краевой задачи для параболических систем: операторные оценки погрешности”, Алгебра и анализ, 29:6 (2017), 99–158; Yu. M. Meshkova, T. A. Suslina, “Homogenization of the first initial boundary value problem for parabolic systems: Operator error estimates”, St. Petersburg Math. J., 29:6 (2018), 935–978
Senik N.N., “Homogenization For Non-Self-Adjoint Periodic Elliptic Operators on An Infinite Cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898
Xu Q., “Convergence Rates for General Elliptic Homogenization Problems in Lipschitz Domains”, SIAM J. Math. Anal., 48:6 (2016), 3742–3788
Borisov D. Cardone G. Durante T., “Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. R. Soc. Edinb. Sect. A-Math., 146:6 (2016), 1115–1158
Xu Q., “Uniform regularity estimates in homogenization theory of elliptic system with lower order terms”, J. Math. Anal. Appl., 438:2 (2016), 1066–1107
Meshkova Yu.M. Suslina T.A., “Two-parametric error estimates in homogenization of second-order elliptic systems in ^{ d }”, Appl. Anal., 95:7, SI (2016), 1413–1448
Xu Q., “Uniform regularity estimates in homogenization theory of elliptic systems with lower order terms on the Neumann boundary problem”, J. Differ. Equ., 261:8 (2016), 4368–4423
Т. А. Суслина, “Усреднение эллиптических систем с периодическими коэффициентами: операторные оценки погрешности в $L_2(\mathbb R^d)$ с учетом корректора”, Алгебра и анализ, 26:4 (2014), 195–263; T. A. Suslina, “Homogenization of elliptic systems with periodic coefficients: operator error estimates in $L_2(\mathbb R^d)$ with corrector taken into account”, St. Petersburg Math. J., 26:4 (2015), 643–693
Н. Н. Сеник, “Усреднение периодического эллиптического оператора в полосе при различных граничных условиях”, Алгебра и анализ, 25:4 (2013), 182–259; N. N. Senik, “Homogenization for a periodic elliptic operator in a strip with various boundary conditions”, St. Petersburg Math. J., 25:4 (2014), 647–697
Т. А. Суслина, “Аппроксимация резольвенты двупараметрического квадратичного операторного пучка вблизи нижнего края спектра”, Алгебра и анализ, 25:5 (2013), 221–251; T. A. Suslina, “Approximation of the resolvent of a twoparametric quadratic operator pencil near the bottom of the spectrum”, St. Petersburg Math. J., 25:5 (2014), 869–891