Loading [MathJax]/jax/output/CommonHTML/jax.js
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2012, Number 5, Pages 31–34 (Mi vmumm527)  

This article is cited in 22 scientific papers (total in 22 papers)

Mathematics

Description of singularities for system “billiard in an ellipse”

V. V. Fokicheva

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A “billiard within an ellipse” is an integrable system appearing in the description of a point motion inside an ellipse with natural reflections at the boundary. This system is considered in the paper, the topological invariant of Liouville equivalence of this system is calculated, which is a Fomenko–Tsishang molecule, by the new method developed by the author.
Key words: integrable system, billiard, Liouville equivalence, marked molecule.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 11.G34.31.0054
Received: 16.12.2011
English version:
Moscow University Mathematics Bulletin, 2012, Volume 67, Issue 5-6, Pages 217–220
DOI: https://doi.org/10.3103/S0027132212050063
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
Language: Russian
Citation: V. V. Fokicheva, “Description of singularities for system “billiard in an ellipse””, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 5, 31–34; Moscow University Mathematics Bulletin, 67:5-6 (2012), 217–220
Citation in format AMSBIB
\Bibitem{Fok12}
\by V.~V.~Fokicheva
\paper Description of singularities for system ``billiard in an ellipse''
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2012
\issue 5
\pages 31--34
\mathnet{http://mi.mathnet.ru/vmumm527}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3076496}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2012
\vol 67
\issue 5-6
\pages 217--220
\crossref{https://doi.org/10.3103/S0027132212050063}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870893933}
Linking options:
  • https://www.mathnet.ru/eng/vmumm527
  • https://www.mathnet.ru/eng/vmumm/y2012/i5/p31
  • This publication is cited in the following 22 articles:
    1. G. V. Belozerov, A. T. Fomenko, “Orbital invariants of billiards and linearly integrable geodesic flows”, Sb. Math., 215:5 (2024), 573–611  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. G. V. Belozerov, “Geodesic flow on an intersection of several confocal quadrics in Rn”, Sb. Math., 214:7 (2023), 897–918  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. A. A. Kuznetsova, “Modeling of degenerate peculiarities of integrable billiard systems by billiard books”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 78:5 (2023), 207–215  mathnet  mathnet  crossref  crossref
    5. G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. V. V. Vedyushkina, V. A. Kibkalo, “Billiardnye knizhki maloi slozhnosti i realizatsiya sloenii Liuvillya integriruemykh sistem”, Chebyshevskii sb., 23:1 (2022), 53–82  mathnet  crossref
    7. Anatoly T. Fomenko, Vladislav A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, European Journal of Mathematics, 8:4 (2022), 1392  crossref
    8. V. V. Vedyushkina, “Orbital invariants of flat billiards bounded by arcs of confocal quadrics and containing focuses”, Moscow University Mathematics Bulletin, 76:4 (2021), 177–180  mathnet  crossref  mathscinet  zmath  isi
    9. M Pnueli, V Rom-Kedar, “On the structure of Hamiltonian impact systems”, Nonlinearity, 34:4 (2021), 2611  crossref
    10. V. V. Vedyushkina, “Integrable billiard systems realize toric foliations on lens spaces and the 3-torus”, Sb. Math., 211:2 (2020), 201–225  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. I. S. Kharcheva, “Isoenergy manifolds of integrable billiard books”, Moscow University Mathematics Bulletin, 75:4 (2020), 149–160  mathnet  crossref  mathscinet  zmath  isi
    12. G. V. Belozerov, “Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space”, Sb. Math., 211:11 (2020), 1503–1538  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow University Mathematics Bulletin, 74:3 (2019), 98–107  mathnet  crossref  mathscinet  zmath  isi
    16. A. T. Fomenko, V. V. Vedyushkina, “Implementation of Integrable Systems by Topological, Geodesic Billiards with Potential and Magnetic Field”, Russ. J. Math. Phys., 26:3 (2019), 320  crossref
    17. V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. I. V. Sypchenko, D. S. Timonina, “Closed geodesics on piecewise smooth surfaces of revolution with constant curvature”, Sb. Math., 206:5 (2015), 738–769  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    20. V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:330
    Full-text PDF :127
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025