Typesetting math: 100%
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 6, Pages 1137–1173
DOI: https://doi.org/10.1070/IM8863
(Mi im8863)
 

This article is cited in 27 scientific papers (total in 27 papers)

Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards

V. V. Vedyushkina (Fokicheva), A. T. Fomenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The authors have recently introduced the class of topological billiards. Topological billiards are glued from elementary planar billiard sheets (bounded by arcs of confocal quadrics) along intervals of their boundaries. It turns out that the integrability of the elementary billiards implies that of the topological billiards. We show that all classical linearly and quadratically integrable geodesic flows on tori and spheres are Liouville equivalent to appropriate topological billiards. Moreover, the linear and quadratic integrals of the geodesic flows reduce to a single canonical linear integral and a single canonical quadratic integral on the billiard. These results are obtained within the framework of the Fomenko–Zieschang theory of the classification of integrable systems.
Keywords: integrable system, topological billiard, geodesic flow, Liouville equivalence, Fomenko–Zieschang invariant.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-6399.2018.1
Russian Foundation for Basic Research 19-01-00775-a
This paper was written with the support of the Russian Federation President's Programme for the support of leading scientific schools (grant no. NSh-6399.2018.1, contract no. 075-02-2018-867), and the Russian Foundation for Basic Research (grant no. 19-01-00775-a).
Received: 13.09.2018
Revised: 04.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37D50; Secondary 37J35
Language: English
Original paper language: Russian
Citation: V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173
Citation in format AMSBIB
\Bibitem{VedFom19}
\by V.~V.~Vedyushkina (Fokicheva), A.~T.~Fomenko
\paper Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards
\jour Izv. Math.
\yr 2019
\vol 83
\issue 6
\pages 1137--1173
\mathnet{http://mi.mathnet.ru/eng/im8863}
\crossref{https://doi.org/10.1070/IM8863}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4036751}
\zmath{https://zbmath.org/?q=an:1436.37068}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83.1137F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510720200002}
\elib{https://elibrary.ru/item.asp?id=43717170}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082945155}
Linking options:
  • https://www.mathnet.ru/eng/im8863
  • https://doi.org/10.1070/IM8863
  • https://www.mathnet.ru/eng/im/v83/i6/p63
  • This publication is cited in the following 27 articles:
    1. Anatoly Fomenko, “Hidden symmetries in Hamiltonian geometry, topology, physics and mechanics”, Priroda, 2025, no. 1(1313), 23  crossref
    2. G. V. Belozerov, A. T. Fomenko, “Orbital invariants of billiards and linearly integrable geodesic flows”, Sb. Math., 215:5 (2024), 573–611  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. G. V. Belozerov, A. T. Fomenko, “Rotation Functions of Integrable Billiards As Orbital Invariants”, Dokl. Math., 2024  crossref
    4. G. V. Belozerov, A. T. Fomenko, “Rotation functions of integrable billiards as orbital invariants”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 515:1 (2024), 5  crossref
    5. JOSCHA HENHEIK, “Deformational rigidity of integrable metrics on the torus”, Ergod. Th. Dynam. Sys., 2024, 1  crossref
    6. V. A. Kibkalo, D. A. Tuniyants, “Uporyadochennye billiardnye igry i topologicheskie svoistva billiardnykh knizhek”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina — 2024, SMFN, 70, no. 4, Rossiiskii universitet druzhby narodov, M., 2024, 610–625  mathnet  crossref
    7. V. V. Vedyushkina, S. E. Pustovoitov, “Classification of Liouville foliations of integrable topological billiards in magnetic fields”, Sb. Math., 214:2 (2023), 166–196  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. V. N. Zav'yalov, “Billiard with slipping by an arbitrary rational angle”, Sb. Math., 214:9 (2023), 1191–1211  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    10. M. A. Nikulin, “Spectrum of the Schrödinger operator in an elliptical ring cover”, Moscow University Mathematics Bulletin, 78:5 (2023), 230–243  mathnet  crossref  crossref  elib
    11. Vladimir Dragović, Sean Gasiorek, Milena Radnović, “Billiard Ordered Games and Books”, Regul. Chaotic Dyn., 27:2 (2022), 132–150  mathnet  crossref  mathscinet
    12. A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    13. V. V. Vedyushkina, V. N. Zav'yalov, “Realization of geodesic flows with a linear first integral by billiards with slipping”, Sb. Math., 213:12 (2022), 1645–1664  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    14. G. V. Belozerov, “Topology of 55-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential”, Moscow University Mathematics Bulletin, 77:6 (2022), 277–289  mathnet  crossref  crossref  mathscinet  zmath  elib
    15. A. T. Fomenko, V. A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, European Journal of Mathematics, 8:4 (2022), 1392–1423  crossref  mathscinet
    16. S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Sb. Math., 212:2 (2021), 211–233  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. V. V. Vedyushkina, I. S. Kharcheva, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems”, Sb. Math., 212:8 (2021), 1122–1179  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    18. A. T. Fomenko, V. V. Vedyushkina, “Billiards with changing geometry and their connection with the implementation of the Zhukovsky and Kovalevskaya cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332  crossref  mathscinet  zmath  isi  scopus
    19. S. E. Pustovoitov, “Topological analysis of an elliptic billiard in a fourth-order potential field”, Moscow University Mathematics Bulletin, 76:5 (2021), 193–205  mathnet  crossref  mathscinet  zmath  isi
    20. A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:698
    Russian version PDF:113
    English version PDF:45
    References:64
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025