Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 2, Pages 129–160
DOI: https://doi.org/10.1070/SM9588
(Mi sm9588)
 

This article is cited in 7 scientific papers (total in 7 papers)

Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space

G. V. Belozerovab

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
References:
Abstract: We study billiards on compact connected domains in R3 bounded by a finite number of confocal quadrics meeting in dihedral angles equal to π/2. Billiards in such domains are integrable due to having three first integrals in involution inside the domain. We introduce two equivalence relations: combinatorial equivalence of billiard domains determined by the structure of their boundaries, and weak equivalence of the corresponding billiard systems on them. Billiard domains in R3 are classified with respect to combinatorial equivalence, resulting in 35 pairwise nonequivalent classes. For each of these obtained classes, we look for the homeomorphism class of the nonsingular isoenergy 5-manifold, and we show this to be one of three types: either S5, or S1×S4, or S2×S3. We obtain 24 classes of pairwise nonequivalent (with respect to weak equivalence) Liouville foliations of billiards on these domains restricted to a nonsingular energy level. We also define bifurcation atoms of three-dimensional tori corresponding to the arcs of the bifurcation diagram.
Bibliography: 59 titles.
Keywords: billiard, integrable billiard, integrable system, Liouville foliation, topological invariants.
Funding agency Grant number
Russian Science Foundation 20-71-00155
This research was supported by a grant from the Russian Science Foundation (project no. 20-71-00155). Sections 2, 4 and 5 of the paper were completed at the Lomonosov Moscow State University and § 3 was written at the Moscow Center of Fundamental and Applied Mathematics.
Received: 30.03.2021
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37J35; Secondary 37C83
Language: English
Original paper language: Russian
Citation: G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160
Citation in format AMSBIB
\Bibitem{Bel22}
\by G.~V.~Belozerov
\paper Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space
\jour Sb. Math.
\yr 2022
\vol 213
\issue 2
\pages 129--160
\mathnet{http://mi.mathnet.ru/eng/sm9588}
\crossref{https://doi.org/10.1070/SM9588}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461425}
\zmath{https://zbmath.org/?q=an:1497.37064}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213..129B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000782508500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129069978}
Linking options:
  • https://www.mathnet.ru/eng/sm9588
  • https://doi.org/10.1070/SM9588
  • https://www.mathnet.ru/eng/sm/v213/i2/p3
  • This publication is cited in the following 7 articles:
    1. Anatoly Fomenko, “Hidden symmetries in Hamiltonian geometry, topology, physics and mechanics”, Priroda, 2025, no. 1(1313), 23  crossref
    2. G. V. Belozerov, A. T. Fomenko, “Orbital invariants of billiards and linearly integrable geodesic flows”, Sb. Math., 215:5 (2024), 573–611  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. A. T. Fomenko, A. I. Shafarevich, V. A. Kibkalo, “Glavnye napravleniya i dostizheniya kafedry differentsialnoi geometrii i prilozhenii na sovremennom etape”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2024, no. 6, 27–37  mathnet  crossref  elib
    4. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. V. V. Vedyushkina, V. N. Zav'yalov, “Realization of geodesic flows with a linear first integral by billiards with slipping”, Sb. Math., 213:12 (2022), 1645–1664  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. G. V. Belozerov, “Topology of 5-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential”, Moscow University Mathematics Bulletin, 77:6 (2022), 277–289  mathnet  crossref  crossref  mathscinet  zmath  elib
    7. Fomenko A.T., Vedyushkina V.V., “Billiards With Changing Geometry and Their Connection With the Implementation of the Zhukovsky and Kovalevskaya Cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:475
    Russian version PDF:78
    English version PDF:57
    Russian version HTML:248
    References:73
    First page:15
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025