Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 10, Pages 1463–1507
DOI: https://doi.org/10.1070/SM2015v206n10ABEH004502
(Mi sm8506)
 

This article is cited in 58 scientific papers (total in 58 papers)

A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics

V. V. Fokicheva

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A new class of integrable billiard systems, called generalized billiards, is discovered. These are billiards in domains formed by gluing classical billiard domains along pieces of their boundaries. (A classical billiard domain is a part of the plane bounded by arcs of confocal quadrics.) On the basis of the Fomenko-Zieschang theory of invariants of integrable systems, a full topological classification of generalized billiards is obtained, up to Liouville equivalence.
Bibliography: 18 titles.
Keywords: integrable system, billiard, Liouville equivalence, Fomenko-Zieschang invariant.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00081-a
This research was carried out with the support of the Russian Foundation for Basic Research (grant no. 13-01-00081-a).
Received: 12.03.2015 and 03.07.2015
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37D50, 37J35; Secondary 70E40
Language: English
Original paper language: Russian
Citation: V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507
Citation in format AMSBIB
\Bibitem{Fok15}
\by V.~V.~Fokicheva
\paper A~topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics
\jour Sb. Math.
\yr 2015
\vol 206
\issue 10
\pages 1463--1507
\mathnet{http://mi.mathnet.ru/eng/sm8506}
\crossref{https://doi.org/10.1070/SM2015v206n10ABEH004502}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438566}
\zmath{https://zbmath.org/?q=an:1357.37062}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206.1463F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000367229400005}
\elib{https://elibrary.ru/item.asp?id=24850585}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953250236}
Linking options:
  • https://www.mathnet.ru/eng/sm8506
  • https://doi.org/10.1070/SM2015v206n10ABEH004502
  • https://www.mathnet.ru/eng/sm/v206/i10/p127
  • This publication is cited in the following 58 articles:
    1. G. V. Belozerov, A. T. Fomenko, “Orbital invariants of billiards and linearly integrable geodesic flows”, Sb. Math., 215:5 (2024), 573–611  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. G. V. Belozerov, A. T. Fomenko, “Rotation Functions of Integrable Billiards As Orbital Invariants”, Dokl. Math., 2024  crossref
    3. S. E. Pustovoitov, “Issledovanie struktury sloeniya Liuvillya integriruemogo ellipticheskogo billiarda s polinomialnym potentsialom”, Chebyshevskii sb., 25:1 (2024), 62–102  mathnet  crossref
    4. G. V. Belozerov, A. T. Fomenko, “Rotation functions of integrable billiards as orbital invariants”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 515:1 (2024), 5  crossref
    5. K. E. Turina, “Topological invariants of some ordered billiard games”, Moscow University Mathematics Bulletin, 79:3 (2024), 122–129  mathnet  crossref  crossref  elib
    6. D. A. Tuniyants, “Topology of isoenergetic surfaces of billiard books glued of rings”, Moscow University Mathematics Bulletin, 79:3 (2024), 130–141  mathnet  crossref  crossref  elib
    7. V. A. Kibkalo, D. A. Tuniyants, “Uporyadochennye billiardnye igry i topologicheskie svoistva billiardnykh knizhek”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina — 2024, SMFN, 70, no. 4, Rossiiskii universitet druzhby narodov, M., 2024, 610–625  mathnet  crossref
    8. V. V. Vedyushkina, S. E. Pustovoitov, “Classification of Liouville foliations of integrable topological billiards in magnetic fields”, Sb. Math., 214:2 (2023), 166–196  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. V. A. Kibkalo, “Parabolicity of degenerate singularities in axisymmetric Euler systems with a gyrostat”, Moscow University Mathematics Bulletin, 78:1 (2023), 28–36  mathnet  crossref  crossref  zmath  elib
    10. G. V. Belozerov, “Geodesic flow on an intersection of several confocal quadrics in $\mathbb{R}^n$”, Sb. Math., 214:7 (2023), 897–918  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. V. N. Zav'yalov, “Billiard with slipping by an arbitrary rational angle”, Sb. Math., 214:9 (2023), 1191–1211  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    13. M. A. Nikulin, “Spectrum of the Schrödinger operator in an elliptical ring cover”, Moscow University Mathematics Bulletin, 78:5 (2023), 230–243  mathnet  crossref  crossref  elib
    14. S.E. Pustovoitov, “Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree”, Russ. J. Math. Phys., 30:4 (2023), 643  crossref
    15. G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    16. V. V. Vedyushkina, A. I. Skvortsov, “Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential”, Moscow University Mathematics Bulletin, 77:1 (2022), 7–19  mathnet  crossref  mathscinet  zmath
    17. Vladimir Dragović, Sean Gasiorek, Milena Radnović, “Billiard Ordered Games and Books”, Regul. Chaotic Dyn., 27:2 (2022), 132–150  mathnet  crossref  mathscinet
    18. A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    19. V. V. Vedyushkina, V. N. Zav'yalov, “Realization of geodesic flows with a linear first integral by billiards with slipping”, Sb. Math., 213:12 (2022), 1645–1664  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    20. G. V. Belozerov, “Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential”, Moscow University Mathematics Bulletin, 77:6 (2022), 277–289  mathnet  crossref  crossref  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:766
    Russian version PDF:301
    English version PDF:30
    References:70
    First page:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025