Loading [MathJax]/jax/output/SVG/config.js
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2023, Number 1, Pages 25–32
DOI: https://doi.org/10.55959/MSU0579-9368-1-2023-1-25-32
(Mi vmumm4514)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Parabolicity of degenerate singularities in axisymmetric Euler systems with a gyrostat

V. A. Kibkaloab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics
Full-text PDF (351 kB) Citations (2)
References:
Abstract: We study degenerate singularities of the well-known multiparametric family of integrable Zhukovsky cases of rigid body dynamics, i.e., Euler tops with added constant gyrostatic moment. For an axisymmetric rigid body and systems close to it, it is proved that degenerate local and semilocal singularities are parabolic and cuspidal singularities, respectively, for all values of the set of system parameters, excluding some hypersurfaces. It was checked that these singularities belonging to the preimage of the cusp of the bifurcation curve satisfy the parabolicity criterion of A. V. Bolsinov, L. Guglielmi, and E. A. Kudryavtseva. Therefore, they are structurally stable for small perturbations of the system in the class of integrable systems, in particular, for a small change in the principal moments of inertia, the components of the gyrostatic moment, and the values of the area integral.
Key words: Hamiltonian system, integrability, rigid body, gyrostat, singularity, Liouville foliation, parabolic singularity, structural stability.
Received: 27.10.2021
English version:
Moscow University Mathematics Bulletin, 2023, Volume 78, Issue 1, Pages 28–36
DOI: https://doi.org/10.3103/S0027132223010060
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
Language: Russian
Citation: V. A. Kibkalo, “Parabolicity of degenerate singularities in axisymmetric Euler systems with a gyrostat”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 1, 25–32; Moscow University Mathematics Bulletin, 78:1 (2023), 28–36
Citation in format AMSBIB
\Bibitem{Kib23}
\by V.~A.~Kibkalo
\paper Parabolicity of degenerate singularities in axisymmetric Euler systems with a gyrostat
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2023
\issue 1
\pages 25--32
\mathnet{http://mi.mathnet.ru/vmumm4514}
\crossref{https://doi.org/10.55959/MSU0579-9368-1-2023-1-25-32}
\zmath{https://zbmath.org/?q=an:7711501}
\elib{https://elibrary.ru/item.asp?id=50317690}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2023
\vol 78
\issue 1
\pages 28--36
\crossref{https://doi.org/10.3103/S0027132223010060}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4514
  • https://www.mathnet.ru/eng/vmumm/y2023/i1/p25
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :104
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025