Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 3, Pages 437–468
DOI: https://doi.org/10.4213/tvp479
(Mi tvp479)
 

This article is cited in 11 scientific papers (total in 11 papers)

Large-deviation probabilities for one-dimensional Markov chains. Part 2: Prestationary distributions in the exponential case

A. A. Borovkov, D. A. Korshunov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: This paper continues investigations of [A. A. Borovkov and A. D. Korshunov, Theory Probab. Appl., 41 (1996), pp. 1–24]. We consider a time-homogeneous and asymptotically space-homogeneous Markov chain {X(n)} that takes values on the real line and has increments possessing a finite exponential moment. The asymptotic behavior of the probability P{X(n)x} is studied as x for fixed or growing values of time n. In particular, we extract the ranges of n within which this probability is asymptotically equivalent to the tail of a stationary distribution π(x) (the latter is studied in [A. A. Borovkov and A. D. Korshunov, Theory Probab. Appl., 41 (1996), pp. 1–24] and is detailed in section 27 of [A. A. Borovkov, Ergodicity and Stability of Stochastic Processes, Wiley, New York, 1998]).
Keywords: Markov chain, rough and exact asymptotic behavior of large-deviation probabilities, transition phenomena, invariant measure.
Received: 12.02.1999
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 3, Pages 379–405
DOI: https://doi.org/10.1137/S0040585X97978358
Bibliographic databases:
Language: Russian
Citation: A. A. Borovkov, D. A. Korshunov, “Large-deviation probabilities for one-dimensional Markov chains. Part 2: Prestationary distributions in the exponential case”, Teor. Veroyatnost. i Primenen., 45:3 (2000), 437–468; Theory Probab. Appl., 45:3 (2001), 379–405
Citation in format AMSBIB
\Bibitem{BorKor00}
\by A.~A.~Borovkov, D.~A.~Korshunov
\paper Large-deviation probabilities for one-dimensional Markov chains. Part 2: Prestationary distributions in the exponential case
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 3
\pages 437--468
\mathnet{http://mi.mathnet.ru/tvp479}
\crossref{https://doi.org/10.4213/tvp479}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1967784}
\zmath{https://zbmath.org/?q=an:0996.60037}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 3
\pages 379--405
\crossref{https://doi.org/10.1137/S0040585X97978358}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170561800002}
Linking options:
  • https://www.mathnet.ru/eng/tvp479
  • https://doi.org/10.4213/tvp479
  • https://www.mathnet.ru/eng/tvp/v45/i3/p437
    Cycle of papers
    This publication is cited in the following 11 articles:
    1. Xia Wang, Miaomiao Zhang, “Large Deviations for the Maximum of the Absolute Value of Partial Sums of Random Variable Sequences”, Mathematics, 10:5 (2022), 758  crossref
    2. E. L. Vetrova, “Asymptotic behavior of large deviation probabilities for a simple oscillating random walk”, J. Math. Sci., 262:4 (2022), 452–456  mathnet  crossref
    3. D. V. Dmitrushchenkov, “On large deviations of a branching process in random environments with immigration at moments of extinction”, Discrete Math. Appl., 25:6 (2015), 339–343  mathnet  crossref  crossref  mathscinet  isi  elib
    4. D. K. Kim, “Asimptotika supremuma sluchainogo bluzhdaniya s pereklyucheniem”, Sib. elektron. matem. izv., 11 (2014), 999–1020  mathnet
    5. M. V. Kozlov, “On large deviations of maximum of a Cramér random walk and the queueing process”, Theory Probab. Appl., 58:1 (2014), 76–106  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    6. A. V. Shklyaev, “Limit theorems for random walk under the assumption of maxima large deviation”, Theory Probab. Appl., 55:3 (2011), 517–525  mathnet  crossref  crossref  mathscinet  isi
    7. D. A. Korshunov, “One-dimensional Asymptotically Homogeneous Markov Chains: Cramér Transform and Large Deviation Probabilities”, Siberian Adv. Math., 14:4 (2004), 30–70  mathnet  mathscinet  zmath
    8. A. A. Borovkov, “Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails”, Theory Probab. Appl., 48:2 (2004), 226–242  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. A. A. Borovkov, “Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Heavy tails of jumps”, Theory Probab. Appl., 47:4 (2003), 584–608  mathnet  mathnet  crossref  crossref  isi
    10. A. A. Borovkov, A. A. Mogul'skii, “Large deviations for Markov chains in the positive quadrant”, Russian Math. Surveys, 56:5 (2001), 803–916  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. A. A. Borovkov, D. A. Korshunov, “Large-Deviation Probabilities for One-Dimensional Markov Chains. Part 3: Prestationary Distributions in the Subexponential Case”, Theory Probab. Appl., 46:4 (2002), 603–618  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:584
    Full-text PDF :215
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025