Processing math: 100%
Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2014, Volume 26, Issue 4, Pages 36–42
DOI: https://doi.org/10.4213/dm1302
(Mi dm1302)
 

This article is cited in 6 scientific papers (total in 6 papers)

On large deviations of a branching process in random environments with immigration at moments of extinction

D. V. Dmitrushchenkov

M. V. Lomonosov Moscow State University
Full-text PDF (448 kB) Citations (6)
References:
Abstract: Let (Zn) be a branching process in independent identically distributed random environments with (conditioned on the environments) geometric distribution of the number of offsprings and immigration of independent identically distributed numbers of new particles at moments of extinction. Supposing that the increments of the accompanying random walk (Sn) and numbers of immigrants satisfy right-hand Cramér condition we obtain the asymptotics of large deviation probabilities $P(\text{ln}\, Z_{n}^{*}\geqslant\theta n)$.
Keywords: large deviations, Cramér condition, branching processes, random environments, processes with immigration.
Received: 06.08.2014
English version:
Discrete Mathematics and Applications, 2015, Volume 25, Issue 6, Pages 339–343
DOI: https://doi.org/10.1515/dma-2015-0032
Bibliographic databases:
Document Type: Article
UDC: 519.214.8+519.218.27
Language: Russian
Citation: D. V. Dmitrushchenkov, “On large deviations of a branching process in random environments with immigration at moments of extinction”, Diskr. Mat., 26:4 (2014), 36–42; Discrete Math. Appl., 25:6 (2015), 339–343
Citation in format AMSBIB
\Bibitem{Dmi14}
\by D.~V.~Dmitrushchenkov
\paper On large deviations of a branching process in random environments with immigration at moments of extinction
\jour Diskr. Mat.
\yr 2014
\vol 26
\issue 4
\pages 36--42
\mathnet{http://mi.mathnet.ru/dm1302}
\crossref{https://doi.org/10.4213/dm1302}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3467223}
\elib{https://elibrary.ru/item.asp?id=22834159}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 6
\pages 339--343
\crossref{https://doi.org/10.1515/dma-2015-0032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366856000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949985700}
Linking options:
  • https://www.mathnet.ru/eng/dm1302
  • https://doi.org/10.4213/dm1302
  • https://www.mathnet.ru/eng/dm/v26/i4/p36
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:445
    Full-text PDF :194
    References:59
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025