Abstract:
In the first part of the paper [29] the options pricing theory was developed under the assumption that a $(B,S)$-market is discrete (in space and in time). It is assumed in the present text that a $(B,S)$-market is operating continuously in time. The riskless bank account $B=(B_t)_{t\ge 0}$ is evolving according to the “compound interests” formula (1.1), and a risky stock price $S=(S_t)_{t\ge 0}$ is governed by geometric Brownian motion (1.4). The “martingale” pricing theory is presented for fair (rational) option price, hedging strategies, and rational expiration times. The Black-Scholes formula for a standard European call option is derived. The paper considers a number of other particular examples of European as well as American options.
Keywords:
risky and riskless securities, options, hedging strategies, geometric (economic) Brownian motion, standard and exotic options, Black–Scholes formula, put-call parity, martingale and dual martingale measures.
Citation:
A. N. Shiryaev, Yu. M. Kabanov, D. O. Kramkov, A. V. Melnikov, “Toward the theory of pricing of options of both European and American types. II. Continuous time”, Teor. Veroyatnost. i Primenen., 39:1 (1994), 80–129; Theory Probab. Appl., 39:1 (1994), 61–102
\Bibitem{ShiKabKra94}
\by A.~N.~Shiryaev, Yu.~M.~Kabanov, D.~O.~Kramkov, A.~V.~Melnikov
\paper Toward the theory of pricing of options of both European and American types.~II. Continuous time
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 1
\pages 80--129
\mathnet{http://mi.mathnet.ru/tvp3763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348191}
\zmath{https://zbmath.org/?q=an:0833.60065}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 1
\pages 61--102
\crossref{https://doi.org/10.1137/1139003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RH52800003}
This publication is cited in the following 62 articles:
Tsvetelin Zaevski, “On the ϵ-optimality of American options”, CFRI, 2025
Tsvetelin S. Zaevski, “Quadratic American Strangle Options in Light of Two-Sided Optimal Stopping Problems”, Mathematics, 12:10 (2024), 1449
Tsvetelin S. Zaevski, “American strangle options with arbitrary strikes”, Journal of Futures Markets, 43:7 (2023), 880
Tsvetelin Zaevski, “Perpetual cancellable American options with convertible features”, Modern Stochastics: Theory and Applications, 2023, 367
A. A. Shishkova, “Raschet aziatskikh optsionov dlya modeli Bleka–Shoulsa”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2018, no. 51, 48–63
Anna Glazyrina, Alexander Melnikov, “Quadratic hedging of equity-linked life insurance contracts under the real-world measure in discrete time”, RDA, 6:2 (2017), 167
Finance Mathematics, 2016, 171
E. Daniliuk, S. Rozhkova, “Hedging of the Barrier Put Option in a Diffusion (B, S) – Market in case of Dividends Payment on a Risk Active”, IFAC-PapersOnLine, 48:25 (2015), 34
Elena Daniliuk, Communications in Computer and Information Science, 564, Information Technologies and Mathematical Modelling - Queueing Theory and Applications, 2015, 304
Patrick Gagliardini, Diego Ronchetti, “Semi-parametric estimation of American option prices”, Journal of Econometrics, 173:1 (2013), 57
Xiangling Hu, Charles L. Munson, Stergios B. Fotopoulos, “Purchasing decisions under stochastic prices: Approximate solutions for order time, order quantity and supplier selection”, Ann Oper Res, 201:1 (2012), 287
Jan Dhaene, Alexander Kukush, Daniël Linders, “The Multivariate Black & Scholes Market: Conditions for Completeness and No-Arbitrage”, SSRN Journal, 2012
R. V. Ivanov, “Optimal Stopping Problem in a Model with Compensated Refusal of Reward”, Math. Notes, 89:2 (2011), 238–244
N. S. Demin, U. V. Andreeva, “Ekzoticheskie optsiony kupli s ogranicheniem vyplat i garantirovannym dokhodom v modeli Bleka–Shoulsa”, Probl. upravl., 1 (2011), 33–39
Danilyuk E.Yu., Demin N.S., “Khedzhirovanie optsiona kupli s zadannoi veroyatnostyu na diffuzionnom (b, s)-rynke v sluchae vyplaty dividendov po riskovomu aktivu”, Vestnik tomskogo gosudarstvennogo universiteta. upravlenie, vychislitelnaya tekhnika i informatika, 2011, no. 1, 22–30
Quantile hedging call option in a diffusion (\it{b}, \it{s})-market in case of dividends payment on a risk active
R. V. Ivanov, “On the problem of optimal stopping for the composite Russian option”, Autom. Remote Control, 71:8 (2010), 1602–1607