Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 1, Pages 80–129 (Mi tvp3763)  

This article is cited in 62 scientific papers (total in 62 papers)

Toward the theory of pricing of options of both European and American types. II. Continuous time

A. N. Shiryaeva, Yu. M. Kabanovb, D. O. Kramkova, A. V. Melnikova

a Steklov Mathematical Institute, Russian Academy of Sciences
b Central Economics and Mathematics Institute, RAS
Abstract: In the first part of the paper [29] the options pricing theory was developed under the assumption that a $(B,S)$-market is discrete (in space and in time). It is assumed in the present text that a $(B,S)$-market is operating continuously in time. The riskless bank account $B=(B_t)_{t\ge 0}$ is evolving according to the “compound interests” formula (1.1), and a risky stock price $S=(S_t)_{t\ge 0}$ is governed by geometric Brownian motion (1.4). The “martingale” pricing theory is presented for fair (rational) option price, hedging strategies, and rational expiration times. The Black-Scholes formula for a standard European call option is derived. The paper considers a number of other particular examples of European as well as American options.
Keywords: risky and riskless securities, options, hedging strategies, geometric (economic) Brownian motion, standard and exotic options, Black–Scholes formula, put-call parity, martingale and dual martingale measures.
Received: 05.07.1993
English version:
Theory of Probability and its Applications, 1994, Volume 39, Issue 1, Pages 61–102
DOI: https://doi.org/10.1137/1139003
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Shiryaev, Yu. M. Kabanov, D. O. Kramkov, A. V. Melnikov, “Toward the theory of pricing of options of both European and American types. II. Continuous time”, Teor. Veroyatnost. i Primenen., 39:1 (1994), 80–129; Theory Probab. Appl., 39:1 (1994), 61–102
Citation in format AMSBIB
\Bibitem{ShiKabKra94}
\by A.~N.~Shiryaev, Yu.~M.~Kabanov, D.~O.~Kramkov, A.~V.~Melnikov
\paper Toward the theory of pricing of options of both European and American types.~II. Continuous time
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 1
\pages 80--129
\mathnet{http://mi.mathnet.ru/tvp3763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348191}
\zmath{https://zbmath.org/?q=an:0833.60065}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 1
\pages 61--102
\crossref{https://doi.org/10.1137/1139003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RH52800003}
Linking options:
  • https://www.mathnet.ru/eng/tvp3763
  • https://www.mathnet.ru/eng/tvp/v39/i1/p80
    Cycle of papers
    This publication is cited in the following 62 articles:
    1. Tsvetelin Zaevski, “On the ϵ-optimality of American options”, CFRI, 2025  crossref
    2. Tsvetelin S. Zaevski, “Quadratic American Strangle Options in Light of Two-Sided Optimal Stopping Problems”, Mathematics, 12:10 (2024), 1449  crossref
    3. Tsvetelin S. Zaevski, “American strangle options with arbitrary strikes”, Journal of Futures Markets, 43:7 (2023), 880  crossref
    4. Tsvetelin Zaevski, “Perpetual cancellable American options with convertible features”, Modern Stochastics: Theory and Applications, 2023, 367  crossref
    5. A. A. Shishkova, “Raschet aziatskikh optsionov dlya modeli Bleka–Shoulsa”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2018, no. 51, 48–63  mathnet  crossref  elib
    6. Anna Glazyrina, Alexander Melnikov, “Quadratic hedging of equity-linked life insurance contracts under the real-world measure in discrete time”, RDA, 6:2 (2017), 167  crossref
    7. Finance Mathematics, 2016, 171  crossref
    8. E. Daniliuk, S. Rozhkova, “Hedging of the Barrier Put Option in a Diffusion (B, S) – Market in case of Dividends Payment on a Risk Active”, IFAC-PapersOnLine, 48:25 (2015), 34  crossref
    9. Elena Daniliuk, Communications in Computer and Information Science, 564, Information Technologies and Mathematical Modelling - Queueing Theory and Applications, 2015, 304  crossref
    10. Patrick Gagliardini, Diego Ronchetti, “Semi-parametric estimation of American option prices”, Journal of Econometrics, 173:1 (2013), 57  crossref
    11. Andreeva U.V., Danilyuk E.Yu., Demin N.S., Rozhkova S.V., Pakhomova E.G., “Evropeiskii optsion kupli lukbek s plavayuschim straikom”, Izvestiya tomskogo politekhnicheskogo universiteta, 321:6 (2012), 13–15  elib
    12. Andreeva U.V., Danilyuk E.Yu., Demin N.S., Rozhkova S.V., Pakhomova E.G., “Primenenie veroyatnostnykh metodov k issledovaniyu ekzoticheskikh optsionov kupli evropeiskogo tipa na osnove ekstremalnykh znachenii tseny riskovogo aktiva”, Izvestiya tomskogo politekhnicheskogo universiteta, 321:6 (2012), 5–12  elib
    13. Xiao-feng Yang, Jin-ping Yu, Wen-li Huang, Sheng-hong Li, “Pricing permanent convertible bonds in EVG model”, Appl. Math. J. Chin. Univ., 27:3 (2012), 268  crossref
    14. Xiangling Hu, Charles L. Munson, Stergios B. Fotopoulos, “Purchasing decisions under stochastic prices: Approximate solutions for order time, order quantity and supplier selection”, Ann Oper Res, 201:1 (2012), 287  crossref
    15. Jan Dhaene, Alexander Kukush, Daniël Linders, “The Multivariate Black & Scholes Market: Conditions for Completeness and No-Arbitrage”, SSRN Journal, 2012  crossref
    16. R. V. Ivanov, “Optimal Stopping Problem in a Model with Compensated Refusal of Reward”, Math. Notes, 89:2 (2011), 238–244  mathnet  crossref  crossref  mathscinet  isi
    17. N. S. Demin, U. V. Andreeva, “Ekzoticheskie optsiony kupli s ogranicheniem vyplat i garantirovannym dokhodom v modeli Bleka–Shoulsa”, Probl. upravl., 1 (2011), 33–39  mathnet
    18. Melnikova E.I., Shirshikova L.A., “Primenenie optsionnykh kontraktov dlya povysheniya konkurentosposobnosti promyshlennykh predpriyatii”, Vestnik yuzhno-uralskogo gosudarstvennogo universiteta. seriya: ekonomika i menedzhment, 2011, 131–137  elib
    19. Danilyuk E.Yu., Demin N.S., “Khedzhirovanie optsiona kupli s zadannoi veroyatnostyu na diffuzionnom (b, s)-rynke v sluchae vyplaty dividendov po riskovomu aktivu”, Vestnik tomskogo gosudarstvennogo universiteta. upravlenie, vychislitelnaya tekhnika i informatika, 2011, no. 1, 22–30 Quantile hedging call option in a diffusion (\it{b}, \it{s})-market in case of dividends payment on a risk active  elib
    20. R. V. Ivanov, “On the problem of optimal stopping for the composite Russian option”, Autom. Remote Control, 71:8 (2010), 1602–1607  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:1358
    Full-text PDF :1036
    First page:100
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025