Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 1, Pages 130–149 (Mi tvp3764)  

This article is cited in 96 scientific papers (total in 96 papers)

A new look at pricing of the “Russian Option”

L. A. Sheppa, A. N. Shiryaevb

a AT&T Bell Laboratories, New Jersey, USA
b Steklov Mathematical Institute, Russian Academy of Sciences
Abstract: The “Russian option” was introduced and calculated with the help of the solution of the optimal stopping problem for a two-dimensional Markov process in [10]. This paper proposes a new derivation of the general results [10]. The key idea is to introduce the dual martingale measure which permits one to reduce the “two-dimensional” optimal stopping problem to a “one-dimensional” one. This approach simplifies the discussion and explain the simplicity of the answer found in [10].
Keywords: diffusion model of the (B,S)-market, bank account, rational option price, rational expiration time, optimal stopping rules, smooth sewing condition, the Stephan problem, diffusion with reflection.
Received: 05.07.1993
English version:
Theory of Probability and its Applications, 1994, Volume 39, Issue 1, Pages 103–119
DOI: https://doi.org/10.1137/1139004
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. A. Shepp, A. N. Shiryaev, “A new look at pricing of the “Russian Option””, Teor. Veroyatnost. i Primenen., 39:1 (1994), 130–149; Theory Probab. Appl., 39:1 (1994), 103–119
Citation in format AMSBIB
\Bibitem{SheShi94}
\by L.~A.~Shepp, A.~N.~Shiryaev
\paper A new look at pricing of the ``Russian Option''
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 1
\pages 130--149
\mathnet{http://mi.mathnet.ru/tvp3764}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348192}
\zmath{https://zbmath.org/?q=an:0834.60072|0829.60055}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 1
\pages 103--119
\crossref{https://doi.org/10.1137/1139004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RH52800004}
Linking options:
  • https://www.mathnet.ru/eng/tvp3764
  • https://www.mathnet.ru/eng/tvp/v39/i1/p130
  • This publication is cited in the following 96 articles:
    1. Monir Chadad, Mohamed Erraoui, “Reflected stochastic differential equations driven by standard and fractional Brownian motion”, Stoch. Dyn., 24:02 (2024)  crossref
    2. M. Çağlar, C. Vardar-Acar, “Stopping Levels for a Spectrally Negative Markov Additive Process”, Commun. Math. Stat., 2024  crossref
    3. Pavel V. Gapeev, “Discounted optimal stopping zero-sum games in diffusion type models with maxima and minima”, Adv. Appl. Probab., 2024, 1  crossref
    4. Wenyuan Wang, Ning Wang, Mi Chen, “On a doubly reflected risk process with running maximum dependent reflecting barriers”, Journal of Computational and Applied Mathematics, 422 (2023), 114880  crossref
    5. Budhi Surya, Wenyuan Wang, Xianghua Zhao, Xiaowen Zhou, “Parisian excursion with capital injection for drawdown reflected Lévy insurance risk process”, Scandinavian Actuarial Journal, 2023:2 (2023), 97  crossref
    6. M. Çağlar, A. Kyprianou, C. Vardar-Acar, “An optimal stopping problem for spectrally negative Markov additive processes”, Stochastic Processes and their Applications, 150 (2022), 1109  crossref
    7. Igor V. Kravchenko, Vladislav V. Kravchenko, Sergii M. Torba, José Carlos Dias, “GENERALIZED EXPONENTIAL BASIS FOR EFFICIENT SOLVING OF HOMOGENEOUS DIFFUSION FREE BOUNDARY PROBLEMS: RUSSIAN OPTION PRICING”, J Math Sci, 266:2 (2022), 353  crossref
    8. Haoyang Cao, Xin Guo, “MFGs for partially reversible investment”, Stochastic Processes and their Applications, 150 (2022), 995  crossref
    9. Pavel V. Gapeev, Peter M. Kort, Maria N. Lavrutich, Jacco J. J. Thijssen, “Optimal Double Stopping Problems for Maxima and Minima of Geometric Brownian Motions”, Methodol Comput Appl Probab, 24:2 (2022), 789  crossref
    10. Pavel V. Gapeev, “Perpetual American Double Lookback Options on Drawdowns and Drawups with Floating Strikes”, Methodol Comput Appl Probab, 24:2 (2022), 749  crossref
    11. Congjin Zhou, Guojing Wang, Jie Guo, “Optimal refinancing strategy for mortgage rate with regime switching”, Appl Stoch Models Bus & Ind, 38:1 (2022), 133  crossref
    12. Pavel V. Gapeev, Hessah Al Motairi, “Discounted optimal stopping problems in first-passage time models with random thresholds”, J. Appl. Probab., 59:3 (2022), 714  crossref
    13. Gapeev V P. Kort P.M. Lavrutich M.N., “Discounted Optimal Stopping Problems For Maxima of Geometric Brownian Motionswith Switching Payoffs”, Adv. Appl. Probab., 53:1 (2021), 189–219  crossref  isi
    14. Zhang X. Li L. Zhang G., “Pricing American Drawdown Options Under Markov Models”, Eur. J. Oper. Res., 293:3 (2021), 1188–1205  crossref  isi
    15. Wenyuan Wang, Xiaowen Zhou, “A Drawdown Reflected Spectrally Negative Lévy Process”, J Theor Probab, 34:1 (2021), 283  crossref
    16. Zhongdi Cen, Anbo Le, “An efficient numerical method for pricing a Russian option with a finite time horizon”, International Journal of Computer Mathematics, 98:10 (2021), 2025  crossref
    17. Gapeev V P., “Optimal Stopping Problems For Running Minima With Positive Discounting Rates”, Stat. Probab. Lett., 167 (2020), 108899  crossref  isi
    18. Min Hyeok Woo, Geon Ho Choe, “Pricing of American lookback spread options”, Stochastic Processes and their Applications, 130:10 (2020), 6300  crossref
    19. Sören Christensen, Albrecht Irle, “The monotone case approach for the solution of certain multidimensional optimal stopping problems”, Stochastic Processes and their Applications, 130:4 (2020), 1972  crossref
    20. Christensen S. Irle A., “A General Method For Finding the Optimal Threshold in Discrete Time”, Stochastics, 91:5 (2019), 728–753  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:803
    Full-text PDF :232
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025