Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2018, Number 51, Pages 48–63
DOI: https://doi.org/10.17223/19988621/51/5
(Mi vtgu628)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Calculation of asian options for the Black–Scholes model

A. A. Shishkova

Tomsk State University , Tomsk, Russian Federation
Full-text PDF (462 kB) Citations (3)
References:
Abstract: The paper deals with one of fundamental problems of financial mathematics, namely, allocation of resources between financial assets to ensure sufficient payments.
When constructing mathematical models of the dynamics of financial indicators, various classes of random processes with discrete and continuous time are used. Therefore, the theory of martingales is a natural and useful mathematical tool in financial mathematics and engineering. In this paper, the Black–Scholes model is considered in continuous time with two financial assets
{Bt=1,dSt=σStdWt,S0>0,
The representation Theorem 1 of square integrable martingales is studied to calculate coefficients of the martingale representation. These coefficients allow further redistribution of the securities portfolio to obtain the greatest profit.
Theorem 1. Let X=(xt,Ft)0tTMt and W=(Wt,Ft)0tT be a Wiener process with respect to the natural filtration. Assume that a family of σ-algebras (Ft)0tT is right continuous. Then there exits a stochastic process (α(t,ω),Ft)0tT with ET0α2(t,ω)dt< such that for all 0tT,

xt=x0+t0α(s,ω)dWs,x,Wt=t0α(s,ω)ds.

Here, ,t is a mutual quadratic characteristic of processes.
The practical result of the research is the solution of the problem of constructing a hedging strategy. The option was used as the main financial instrument.
To construct a hedging strategy in the case of the model under consideration, we apply Theorem 1 to the martingale
Mt=E(fT|Ft),
where ft=(1TT0StdtK)+ is the payment function.
We found a quadratically integrable process (αt)0tT adapted with the filtration (Ft)0tT such that for all t[0,T]
Mt=M0+t0αsdWs.
The strategy Π=(βt,γt) is calculated by the formulas
βt=Eft+t0αsdWsγtSt,γt=αt/σSt.
Keywords: martingale, stochastic integral, financial strategy, wiener process, hedging, option value.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 2.3208.2017/4.6
Received: 17.05.2017
Bibliographic databases:
Document Type: Article
UDC: 519.81, 519.21
MSC: 60H10, 60G44, 60J65
Language: Russian
Citation: A. A. Shishkova, “Calculation of asian options for the Black–Scholes model”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 51, 48–63
Citation in format AMSBIB
\Bibitem{Shi18}
\by A.~A.~Shishkova
\paper Calculation of asian options for the Black--Scholes model
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2018
\issue 51
\pages 48--63
\mathnet{http://mi.mathnet.ru/vtgu628}
\crossref{https://doi.org/10.17223/19988621/51/5}
\elib{https://elibrary.ru/item.asp?id=32658718}
Linking options:
  • https://www.mathnet.ru/eng/vtgu628
  • https://www.mathnet.ru/eng/vtgu/y2018/i51/p48
  • This publication is cited in the following 3 articles:
    1. A. A. Murzintseva, S. M. Pergamenshchikov, E. A. Pchelintsev, “Hedging problem for the Asian call options with transaction costs”, Theory Probab. Appl., 68:2 (2023), 211–230  mathnet  crossref  crossref
    2. “Abstracts of talks given at the 3rd International Conference on Stochastic Methods”, Theory Probab. Appl., 64:1 (2019), 124–169  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. A. A. Shishkova, “The hedging strategy for Asian option”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2018, no. 56, 29–41  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :100
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025