Abstract:
Let ξ1,ξ2,… be a sequence of independent equally distributed random variables with variance 1.
Put a=Mξ1, c3=M|ξ1−a|3.
Let the functions gi(t), t⩾0, i=1,2, satisfy the conditions
g2(t)<g1(t),g2(0)<0<g1(0),|gi(t+h)−gi(t)|<Kh,h>0,
where K is some constant.
Put
Snk=1√nk∑i=1(ξi−a).
Let
Wn=P{g2(k/n)<Snk<g1(k/n),k=¯1,n};W=P{g2(t)<ξ(t)−ξ(0)<g1(t),0⩽t⩽1},
where ξ(t) is a process of Brownian motion.
The following assertion is proved.
Theorem.{\em There exists an absolute constant L such that
|Wh−W|<Lc23(K+1)√n.
}
Citation:
S. V. Nagaev, “On the speed of convergence in a boundary problem. I”, Teor. Veroyatnost. i Primenen., 15:2 (1970), 179–199; Theory Probab. Appl., 15:2 (1970), 163–186
This publication is cited in the following 24 articles:
Yuan Li, David A. Goldberg, “Simple and Explicit Bounds for Multiserver Queues with 11-ρ Scaling”, Mathematics of OR, 2024
Riddhipratim Basu, Timo Seppäläinen, Xiao Shen, “Temporal Correlation in the Inverse-Gamma Polymer”, Commun. Math. Phys., 405:7 (2024)
Firas Rassoul‐Agha, Timo Seppäläinen, Xiao Shen, “Coalescence and total‐variation distance of semi‐infinite inverse‐gamma polymers”, Journal of London Math Soc, 110:1 (2024)
Vincent Liang, Konstantin Borovkov, “On Markov chain approximations for computing boundary crossing probabilities of diffusion processes”, J. Appl. Probab., 60:4 (2023), 1386
Dashi I. Singham, Michael P. Atkinson, “BOUNDARY CROSSING PROBABILITIES FOR THE CUMULATIVE SAMPLE MEAN”, Prob. Eng. Inf. Sci., 32:2 (2018), 275
S. G. Bobkov, G. P. Chistyakov, H. Kösters, “The Entropic Erdős-Kac Limit Theorem”, J Theor Probab, 28:4 (2015), 1520
James C. Fu, Tung-Lung Wu, “Linear and Nonlinear Boundary Crossing Probabilities for Brownian Motion and Related Processes”, Journal of Applied Probability, 47:4 (2010), 1058
James C. Fu, Tung-Lung Wu, “Linear and Nonlinear Boundary Crossing Probabilities for Brownian Motion and Related Processes”, J. Appl. Probab., 47:04 (2010), 1058
N. K. Bakirov, “Asymptotics for the probability of not exceeding a curvilinear level by a Gaussian random walk”, Izv. Math., 73:1 (2009), 47–77
Kordzakhia N., Novikov A., “Pricing of Defaultable Securities under Stochastic Interest”, Mathematical Control Theory and Finance, 2008, 251–263
Ibrahim A. Ahmad, “Mixing Limit Theorems of Maximum of Absolute Sums and their Convergence Rates”, J Theor Probab, 18:4 (2005), 813
A. A. Borovkov, “On the Asymptotic Behavior of Distributions of First-Passage Times, II”, Math. Notes, 75:3 (2004), 322–330
A. K. Aleshkyavichene, S. V. Nagaev, “Transient phenomena in a random walk”, Theory Probab. Appl., 48:1 (2004), 1–18
Alex Novikov, Volf Frishling, Nino Kordzakhia, “Approximations of boundary crossing probabilities for a Brownian motion”, Journal of Applied Probability, 36:4 (1999), 1019
Jean Diebolt, “Testing the functions defining a nonlinear autoregressive time series”, Stochastic Processes and their Applications, 36:1 (1990), 85
R. M. Dudley, Lecture Notes in Mathematics, 1097, École d'Été de Probabilités de Saint-Flour XII - 1982, 1984, 1
A. A. Borovkov, “Boundary-value problems, the invariance principle, and large deviations”, Russian Math. Surveys, 38:4 (1983), 259–290
A. K. Aleškevičiene, “On the probabilities of large deviations for the maximum of sums of independent random variables”, Theory Probab. Appl., 24:1 (1979), 16–33
A. K. Aleškevičiene, “On the probabilities of large deviations for the maximum of sums of independent random variables. II”, Theory Probab. Appl., 24:2 (1979), 322–327
A. K. Aleškevičiene, “Local limit theorems for the density function of the maximum sum of independent random variables”, Theory Probab. Appl., 21:3 (1977), 449–469