Abstract:
Let ξ1,ξ2,… be a sequence of independent identically distributed random variables with, non-degenerate distribution function F(x),
a=Eξ1,σ2=Dξ1,Sn=n∑l=1ξl,¯Sn=max1⩽k⩽nSk,¯F(x)=P{ˉSn<x} .
We prove that if a=0 and
∫∞−∞ehydF(y)<∞,|h|⩽A,A>0,
then for n→∞, 1<x=o(√n) 1−¯Fn(x¯σ√n)1−G(x)=exp{x3√nλ(x√n)}[1+O(x√n+e−x2/8)],
where G(x)=(2/π)1/2∫x0e−u2/2du (x⩾0), G(x)=0 (x<0) and λ(u) is a Cramer's power series. Analogous statement is proved for the case a>0. We obtain also the theorems on the probabilities of large deviations for ¯Sn in the Linnik's zones.
Citation:
A. K. Aleškevičiene, “On the probabilities of large deviations for the maximum of sums of independent random variables”, Teor. Veroyatnost. i Primenen., 24:1 (1979), 18–33; Theory Probab. Appl., 24:1 (1979), 16–33
\Bibitem{Ale79}
\by A.~K.~Ale{\v s}kevi{\v{c}}iene
\paper On the probabilities of large deviations for the maximum of sums of independent random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1979
\vol 24
\issue 1
\pages 18--33
\mathnet{http://mi.mathnet.ru/tvp948}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=522234}
\zmath{https://zbmath.org/?q=an:0396.60030|0432.60032}
\transl
\jour Theory Probab. Appl.
\yr 1979
\vol 24
\issue 1
\pages 16--33
\crossref{https://doi.org/10.1137/1124002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JX60900002}