\Bibitem{Bor83}
\by A.~A.~Borovkov
\paper Boundary-value problems, the invariance principle, and large deviations
\jour Russian Math. Surveys
\yr 1983
\vol 38
\issue 4
\pages 259--290
\mathnet{http://mi.mathnet.ru/eng/rm2955}
\crossref{https://doi.org/10.1070/RM1983v038n04ABEH004212}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=710122}
\zmath{https://zbmath.org/?q=an:0533.60026|0559.60025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1983RuMaS..38..259B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983TA39200011}
Linking options:
https://www.mathnet.ru/eng/rm2955
https://doi.org/10.1070/RM1983v038n04ABEH004212
https://www.mathnet.ru/eng/rm/v38/i4/p227
This publication is cited in the following 7 articles:
Mikhail A. Lifshits, Zhan Shi, “Functional large deviations for burgers particle systems”, Comm Pure Appl Math, 60:1 (2007), 41
Collet, P, “Some aspects of the central limit theorem and related topics”, Harmonic Analysis and Rational Approximation: Their Roles in Signals, Control and Dynamical Systems, 327 (2006), 105
A. A. Borovkov, “Asymptotic analysis for random walks with nonidentically distributed jumps having finite variance”, Siberian Math. J., 46:6 (2005), 1020–1038
A. A. Borovkov, “Kolmogorov and boundary problems of probability theory”, Russian Math. Surveys, 59:1 (2004), 91–102
L. Saulis, V. Statulevičius, Limit Theorems of Probability Theory, 2000, 185
V. I. Piterbarg, V. R. Fatalov, “The Laplace method for probability measures in Banach spaces”, Russian Math. Surveys, 50:6 (1995), 1151–1239
Vidmantas Bentkus, “Theorems of large deviations in the multivariate invariance principle”, Journal of Multivariate Analysis, 41:2 (1992), 297