Processing math: 100%
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 6, Pages 1265–1287 (Mi smj1038)  

Asymptotic analysis for random walks with nonidentically distributed jumps having finite variance

A. A. Borovkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Let ξ1ξ2, be independent random variables with distributions F1,F2, in a triangular array scheme (Fi may depend on some parameter). Assume that Eξi=0, Eξ2i< and put Sn=ni=1ξi, ¯Sn=maxknSk. Assuming further that some regularly varying functions majorize or minorize the “averaged” distribution F=1nni=1Fi, we find upper and lower bounds for the probabilities P(Sn>x) and P(¯Sn>x). We also study the asymptotics of these probabilities and of the probabilities that a trajectory {Sk} crosses the remote boundary {g(k)}; that is, the asymptotics of P(maxkn(Skg(k))>0). The case n= is not excluded. We also estimate the distribution of the first crossing time.
Keywords: random walks, large deviations, nonidentically distributed jumps, triangular array scheme, finite variance, transient phenomena.
Received: 21.09.2004
English version:
Siberian Mathematical Journal, 2005, Volume 46, Issue 6, Pages 1020–1038
DOI: https://doi.org/10.1007/s11202-005-0097-8
Bibliographic databases:
UDC: 519.214
Language: Russian
Citation: A. A. Borovkov, “Asymptotic analysis for random walks with nonidentically distributed jumps having finite variance”, Sibirsk. Mat. Zh., 46:6 (2005), 1265–1287; Siberian Math. J., 46:6 (2005), 1020–1038
Citation in format AMSBIB
\Bibitem{Bor05}
\by A.~A.~Borovkov
\paper Asymptotic analysis for random walks with nonidentically distributed jumps having finite variance
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 6
\pages 1265--1287
\mathnet{http://mi.mathnet.ru/smj1038}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2195028}
\zmath{https://zbmath.org/?q=an:1117.60024}
\elib{https://elibrary.ru/item.asp?id=13495884}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 6
\pages 1020--1038
\crossref{https://doi.org/10.1007/s11202-005-0097-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234073700005}
Linking options:
  • https://www.mathnet.ru/eng/smj1038
  • https://www.mathnet.ru/eng/smj/v46/i6/p1265
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:565
    Full-text PDF :141
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025