Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1998, Volume 116, Number 1, Pages 3–53
DOI: https://doi.org/10.4213/tmf888
(Mi tmf888)
 

This article is cited in 16 scientific papers (total in 16 papers)

Towards an inverse scattering theory for two-dimensional nondecaying potentials

M. Boitia, F. Pempinellia, A. K. Pogrebkovb, B. Prinaria

a Lecce University
b Steklov Mathematical Institute, Russian Academy of Sciences
Abstract: The inverse scattering method is considered for the nonstationary Schrödinger equation with the potential $u(x_{1},x_{2})$ nondecaying in a finite number of directions in the $x$ plane. The general resolvent approach, which is particularly convenient for this problem, is tested using a potential that is the Bäcklund transformation of an arbitrary decaying potential and that describes a soliton superimposed on an arbitrary background. In this example, the resolvent, Jost solutions, and spectral data are explicitly constructed, and their properties are analyzed. The characterization equations satisfied by the spectral data are derived, and the unique solution of the inverse problem is obtained. The asymptotic potential behavior at large distances is also studied in detail. The obtained resolvent is used in a dressing procedure to show that with more general nondecaying potentials, the Jost solutions may have an additional cut in the spectral-parameter complex domain. The necessary and sufficient condition for the absence of this additional cut is formulated.
Received: 15.12.1997
English version:
Theoretical and Mathematical Physics, 1998, Volume 116, Issue 1, Pages 741–781
DOI: https://doi.org/10.1007/BF02557122
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “Towards an inverse scattering theory for two-dimensional nondecaying potentials”, TMF, 116:1 (1998), 3–53; Theoret. and Math. Phys., 116:1 (1998), 741–781
Citation in format AMSBIB
\Bibitem{BoiPemPog98}
\by M.~Boiti, F.~Pempinelli, A.~K.~Pogrebkov, B.~Prinari
\paper Towards an inverse scattering theory for two-dimensional nondecaying potentials
\jour TMF
\yr 1998
\vol 116
\issue 1
\pages 3--53
\mathnet{http://mi.mathnet.ru/tmf888}
\crossref{https://doi.org/10.4213/tmf888}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1700690}
\zmath{https://zbmath.org/?q=an:0951.35118}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 116
\issue 1
\pages 741--781
\crossref{https://doi.org/10.1007/BF02557122}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076425700001}
Linking options:
  • https://www.mathnet.ru/eng/tmf888
  • https://doi.org/10.4213/tmf888
  • https://www.mathnet.ru/eng/tmf/v116/i1/p3
  • This publication is cited in the following 16 articles:
    1. M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “Building an extended resolvent of the heat operator via twisting transformations”, Theoret. and Math. Phys., 159:3 (2009), 721–733  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Boiti, M, “Scattering transform for nonstationary Schrodinger equation with bidimensionally perturbed N-soliton potential”, Journal of Mathematical Physics, 47:12 (2006), 123510  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    3. Boiti, M, “On the extended resolvent of the nonstationary Schrodinger operator for a Darboux transformed potential”, Journal of Physics A-Mathematical and General, 39:8 (2006), 1877  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    4. M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “Spectral Theory of the Nonstationary Schrödinger Equation with a Bidimensionally Perturbed One-Dimensional Potential”, Proc. Steklov Inst. Math., 251 (2005), 6–48  mathnet  mathscinet  zmath
    5. M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “Spectral Theory of the Nonstationary Schrodinger Equation with a Two-Dimensionally Perturbed Arbitrary One-Dimensional Potential”, Theoret. and Math. Phys., 144:2 (2005), 1100–1116  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. O. M. Kiselev, “Asymptotics of solutions of higher-dimensional integrable equations and their perturbations”, Journal of Mathematical Sciences, 138:6 (2006), 6067–6230  mathnet  crossref  mathscinet  zmath  elib
    7. Boiti, M, “Extended resolvent and inverse scattering with an application to KPI”, Journal of Mathematical Physics, 44:8 (2003), 3309  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    8. Li-Yeng Sung, Scattering, 2002, 1717  crossref
    9. Boiti, M, “Towards an inverse scattering theory for non-decaying potentials of the heat equation”, Inverse Problems, 17:4 (2001), 937  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    10. Boiti, M, “Inverse scattering transform for the perturbed 1-soliton potential of the heat equation”, Physics Letters A, 285:5–6 (2001), 307  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    11. Prinari, B, “On some nondecaying potentials and related Jost solutions for the heat conduction equation”, Inverse Problems, 16:3 (2000), 589  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    12. Fokas, AS, “On the integrability of linear and nonlinear partial differential equations”, Journal of Mathematical Physics, 41:6 (2000), 4188  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    13. Boiti M., Pempinelli F., Prinari B., Pogrebkov A.K., “Some nondecaying potentials for the nonstationary Schrodinger equation”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years After Needs '79, 2000, 33–41  crossref  mathscinet  zmath  isi
    14. Boiti M., Pempinelli F., Prinari B., Pogrebkov A.K., “Some nondecaying potentials for the heat conduction equation”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years After Needs '79, 2000, 42–50  crossref  mathscinet  zmath  isi
    15. M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “Bäcklund and Darboux Transformations for the Nonstationary Schrödinger Equation”, Proc. Steklov Inst. Math., 226 (1999), 42–62  mathnet  mathscinet  zmath
    16. Boiti M., Pempinelli F., Prinari B., Pogrebkov A.K., “N-wave soliton solution on a generic background for KPI equation”, International Seminar Day on Diffraction, Proceedings, 1999, 167–175  crossref  mathscinet  isi  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:397
    Full-text PDF :228
    References:1
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025