Abstract:
We consider the nonstationary Schrodinger equation with the potential being a perturbation of a generic one-dimensional potential by means of a decaying two-dimensional function in the framework of the extended resolvent approach. We give the corresponding modification of the Jost and advanced/retarded solutions and spectral data and present relations between them.
Citation:
M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “Spectral Theory of the Nonstationary Schrodinger Equation with a Two-Dimensionally Perturbed Arbitrary One-Dimensional Potential”, TMF, 144:2 (2005), 257–276; Theoret. and Math. Phys., 144:2 (2005), 1100–1116
\Bibitem{BoiPemPog05}
\by M.~Boiti, F.~Pempinelli, A.~K.~Pogrebkov, B.~Prinari
\paper Spectral Theory of the Nonstationary Schrodinger Equation with a Two-Dimensionally Perturbed Arbitrary One-Dimensional Potential
\jour TMF
\yr 2005
\vol 144
\issue 2
\pages 257--276
\mathnet{http://mi.mathnet.ru/tmf1851}
\crossref{https://doi.org/10.4213/tmf1851}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2194279}
\zmath{https://zbmath.org/?q=an:1178.37096}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1100B}
\elib{https://elibrary.ru/item.asp?id=17703435}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 2
\pages 1100--1116
\crossref{https://doi.org/10.1007/s11232-005-0139-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232092900005}
Linking options:
https://www.mathnet.ru/eng/tmf1851
https://doi.org/10.4213/tmf1851
https://www.mathnet.ru/eng/tmf/v144/i2/p257
This publication is cited in the following 3 articles:
M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “Building an extended resolvent of the heat operator via twisting transformations”, Theoret. and Math. Phys., 159:3 (2009), 721–733
Boiti M, Pempinelli F, Pogrebkov AK, “On the extended resolvent of the nonstationary Schrodinger operator for a Darboux transformed potential”, Journal of Physics A-Mathematical and General, 39:8 (2006), 1877–1898
Boiti M, Pempinelli F, Pogrebkov AK, “Scattering transform for nonstationary Schrodinger equation with bidimensionally perturbed N-soliton potential”, Journal of Mathematical Physics, 47:12 (2006), 123510