Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1999, Volume 226, Pages 49–71 (Mi tm528)  

This article is cited in 10 scientific papers (total in 10 papers)

Bäcklund and Darboux Transformations for the Nonstationary Schrödinger Equation

M. Boitia, F. Pempinellia, A. K. Pogrebkovb, B. Prinaria

a Lecce University
b Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Potentials of the nonstationary Schrödinger operator constructed by means of $n$ recursive Bäcklund transformations are studied in detail. The corresponding Darboux transformations of the Jost solutions are introduced. We show that these solutions obey modified integral equations and present their analyticity properties. Generated transformations of the spectral data are derived.
Received in April 1999
Bibliographic databases:
Document Type: Article
UDC: 501
Language: Russian
Citation: M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “Bäcklund and Darboux Transformations for the Nonstationary Schrödinger Equation”, Mathematical physics. Problems of quantum field theory, Collection of papers dedicated to the 65th anniversary of academician Lyudvig Dmitrievich Faddeev, Trudy Mat. Inst. Steklova, 226, Nauka, MAIK «Nauka/Inteperiodika», M., 1999, 49–71; Proc. Steklov Inst. Math., 226 (1999), 42–62
Citation in format AMSBIB
\Bibitem{BoiPemPog99}
\by M.~Boiti, F.~Pempinelli, A.~K.~Pogrebkov, B.~Prinari
\paper B\"acklund and Darboux Transformations for the Nonstationary Schr\"odinger Equation
\inbook Mathematical physics. Problems of quantum field theory
\bookinfo Collection of papers dedicated to the 65th anniversary of academician Lyudvig Dmitrievich Faddeev
\serial Trudy Mat. Inst. Steklova
\yr 1999
\vol 226
\pages 49--71
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm528}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1782552}
\zmath{https://zbmath.org/?q=an:1056.37511}
\transl
\jour Proc. Steklov Inst. Math.
\yr 1999
\vol 226
\pages 42--62
Linking options:
  • https://www.mathnet.ru/eng/tm528
  • https://www.mathnet.ru/eng/tm/v226/p49
  • This publication is cited in the following 10 articles:
    1. Zhang N., Xia T., “a Hierarchy of Lattice Soliton Equations Associated With a New Discrete Eigenvalue Problem and Darboux Transformations”, Int. J. Nonlinear Sci. Numer. Simul., 16:7-8 (2015), 301–306  crossref  mathscinet  isi  elib  scopus  scopus
    2. Sakhnovich A.L., “The time-dependent Schrodinger equation of dimension k+1: explicit and rational solutions via GBDT and multinodes”, J. Phys. A: Math. Theor., 44:47 (2011), 475201  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. Boiti, M, “Scattering transform for nonstationary Schrodinger equation with bidimensionally perturbed N-soliton potential”, Journal of Mathematical Physics, 47:12 (2006), 123510  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    4. Boiti M., Pempinelli F., Pogrebkov A.K., “On the extended resolvent of the nonstationary Schrodinger operator for a Darboux transformed potential”, Journal of Physics A–Mathematical and General, 39:8 (2006), 1877–1898  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    5. Sakhnovich A.L., “Matrix Kadomtsev–Petviashvili equation: matrix identities and explicit non–singular solutions”, Journal of Physics A–Mathematical and General, 36:18 (2003), 5023–5033  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Boiti M., Pempinelli F., Pogrebkov A.K., Prinari B., “Inverse scattering theory of the heat equation for a perturbed one–soliton potential”, Journal of Mathematical Physics, 43:2 (2002), 1044–1062  crossref  mathscinet  zmath  adsnasa  isi  scopus
    7. Boiti M., Pempinelli F., Pogrebkov A.K., Prinari B., “Towards an inverse scattering theory for non–decaying potentials of the heat equation”, Inverse Problems, 17:4 (2001), 937–957  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    8. Prinari B., “On some nondecaying potentials and related Jost solutions for the heat conduction equation”, Inverse Problems, 16:3 (2000), 589–603  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. Boiti M., Pempinelli F., Prinari B., Pogrebkov A.K., “Some nondecaying potentials for the nonstationary Schrodinger equation”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years After Needs '79, 2000, 33–41  crossref  mathscinet  zmath  isi
    10. Boiti M., Pempinelli F., Prinari B., Pogrebkov A.K., “Some nondecaying potentials for the heat conduction equation”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years After Needs '79, 2000, 42–50  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:515
    Full-text PDF :169
    References:78
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025