Loading [MathJax]/jax/output/CommonHTML/jax.js
Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2004, Volume 11, Pages 3–149 (Mi cmfd4)  

This article is cited in 9 scientific papers (total in 9 papers)

Asymptotics of solutions of higher-dimensional integrable equations and their perturbations

O. M. Kiselev

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Full-text PDF (980 kB) Citations (9)
References:
English version:
Journal of Mathematical Sciences, 2006, Volume 138, Issue 6, Pages 6067–6230
DOI: https://doi.org/10.1007/s10958-006-0347-8
Bibliographic databases:
UDC: 514.7+514.8+517.95
Language: Russian
Citation: O. M. Kiselev, “Asymptotics of solutions of higher-dimensional integrable equations and their perturbations”, Equations of mathematical physics, CMFD, 11, MAI, M., 2004, 3–149; Journal of Mathematical Sciences, 138:6 (2006), 6067–6230
Citation in format AMSBIB
\Bibitem{Kis04}
\by O.~M.~Kiselev
\paper Asymptotics of solutions of higher-dimensional integrable equations and their perturbations
\inbook Equations of mathematical physics
\serial CMFD
\yr 2004
\vol 11
\pages 3--149
\publ MAI
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd4}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120870}
\zmath{https://zbmath.org/?q=an:02204906}
\elib{https://elibrary.ru/item.asp?id=13506869}
\transl
\jour Journal of Mathematical Sciences
\yr 2006
\vol 138
\issue 6
\pages 6067--6230
\crossref{https://doi.org/10.1007/s10958-006-0347-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749664081}
Linking options:
  • https://www.mathnet.ru/eng/cmfd4
  • https://www.mathnet.ru/eng/cmfd/v11/p3
  • This publication is cited in the following 9 articles:
    1. Adrian Nachman, Idan Regev, Daniel Tataru, “A nonlinear Plancherel theorem with applications to global well-posedness for the defocusing Davey–Stewartson equation and to the inverse boundary value problem of Calderón”, Invent. math., 220:2 (2020), 395  crossref
    2. Brown R.M., Perry P.A., “Soliton Solutions and Their (in)Stability For the Focusing Davey-Stewartson II Equation”, Nonlinearity, 31:9 (2018), 4290–4325  crossref  mathscinet  zmath  isi  scopus
    3. Anna Kazeykina, Claudio Muñoz, “Dispersive estimates for rational symbols and local well-posedness of the nonzero energy NV equation. II”, Journal of Differential Equations, 264:7 (2018), 4822  crossref
    4. I T Habibullin, A R Khakimova, “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz”, J. Phys. A: Math. Theor., 50:30 (2017), 305206  crossref
    5. Anna Kazeykina, Claudio Muñoz, “Dispersive estimates for rational symbols and local well-posedness of the nonzero energy NV equation”, Journal of Functional Analysis, 270:5 (2016), 1744  crossref
    6. Christian Klein, Jean-Claude Saut, “A numerical approach to Blow-up issues for Davey-Stewartson II systems”, Communications on Pure & Applied Analysis, 14:4 (2015), 1443  crossref
    7. Christian Klein, Jean-Claude Saut, Fields Institute Communications, 75, Hamiltonian Partial Differential Equations and Applications, 2015, 383  crossref
    8. B. I. Suleimanov, ““Kvantovaya” linearizatsiya uravnenii Penleve kak komponenta ikh L,A par”, Ufimsk. matem. zhurn., 4:2 (2012), 127–135  mathnet
    9. Martin Hadac, Sebastian Herr, Herbert Koch, “Well-posedness and scattering for the KP-II equation in a critical space”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:3 (2009), 917  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:821
    Full-text PDF :464
    References:106
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025