Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 93, Number 2, Pages 249–263 (Mi tmf1526)  

This article is cited in 9 scientific papers (total in 9 papers)

On two mathematical problems of canonical quantization. IV

A. I. Kirillov

Independent University of Moscow
References:
Abstract: A method for solving the problem of reconstructing a measure beginning with its logarithmic derivative is presented. The method completes that of solving the stochastic differential equation via Dirichlet forms proposed by S. Albeverio and M. Rockner. As a result one obtains the mathematical apparatus for the stochastic quantization. The apparatus is applied to prove the existence of the Feynman–Kac measure of the sine-Gordon and λϕ2n/(1+κ2ϕ2n)-models. A synthesis of both mathematical problems of canonical quantization is obtained in the form of a second-order martingale problem for vacuum noise. It is shown that in stochastic mechanics the martingale problem is an analog of Newton's second law and enables us to find the Nelson's stochastic trajectories without determining the wave functions.
Received: 02.07.1992
English version:
Theoretical and Mathematical Physics, 1992, Volume 93, Issue 2, Pages 1251–1261
DOI: https://doi.org/10.1007/BF01083523
Bibliographic databases:
Language: Russian
Citation: A. I. Kirillov, “On two mathematical problems of canonical quantization. IV”, TMF, 93:2 (1992), 249–263; Theoret. and Math. Phys., 93:2 (1992), 1251–1261
Citation in format AMSBIB
\Bibitem{Kir92}
\by A.~I.~Kirillov
\paper On two mathematical problems of canonical quantization.~IV
\jour TMF
\yr 1992
\vol 93
\issue 2
\pages 249--263
\mathnet{http://mi.mathnet.ru/tmf1526}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1233544}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 93
\issue 2
\pages 1251--1261
\crossref{https://doi.org/10.1007/BF01083523}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LJ23200005}
Linking options:
  • https://www.mathnet.ru/eng/tmf1526
  • https://www.mathnet.ru/eng/tmf/v93/i2/p249
    Cycle of papers
    This publication is cited in the following 9 articles:
    1. Massimiliano Gubinelli, Encyclopedia of Mathematical Physics, 2025, 648  crossref
    2. V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078  mathnet  mathnet  crossref  crossref  isi  scopus
    3. A. I. Kirillov, “Generalized differentiable product measures”, Math. Notes, 63:1 (1998), 33–49  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. A. I. Kirillov, “On the reconstruction of measures from their logarithmic derivatives”, Izv. Math., 59:1 (1995), 121–139  mathnet  crossref  mathscinet  zmath  isi
    5. A. I. Kirillov, “Sine-Gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization”, Theoret. and Math. Phys., 105:2 (1995), 1329–1345  mathnet  crossref  mathscinet  zmath  isi  elib
    6. A. I. Kirillov, “Field of sine-Gordon type in spacetime of arbitrary dimension: Existence of the nelson measure”, Theoret. and Math. Phys., 98:1 (1994), 8–19  mathnet  crossref  mathscinet  zmath  isi
    7. A. I. Kirillov, “Infinite-dimensional analysis and quantum theory as semimartingale calculus”, Russian Math. Surveys, 49:3 (1994), 43–95  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. A. I. Kirillov, “Prescription of measures on functional spaces by means of numerical densities and path integrals”, Math. Notes, 53:5 (1993), 555–557  mathnet  crossref  mathscinet  zmath  isi  elib
    9. N. V. Norin, O. G. Smolyanov, “Some results on logarithmic derivatives of measures on a locally convex space”, Math. Notes, 54:6 (1993), 1277–1279  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:389
    Full-text PDF :134
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025