Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1994, Volume 49, Issue 3, Pages 43–95
DOI: https://doi.org/10.1070/RM1994v049n03ABEH002257
(Mi rm1197)
 

This article is cited in 15 scientific papers (total in 15 papers)

Infinite-dimensional analysis and quantum theory as semimartingale calculus

A. I. Kirillov

Moscow Power Engineering Institute (Technical University)
References:
Received: 14.03.1994
Bibliographic databases:
Document Type: Article
UDC: 517.98+519.217+530.145+530.12
MSC: 81S30, 81S25, 60G44
Language: English
Original paper language: Russian
Citation: A. I. Kirillov, “Infinite-dimensional analysis and quantum theory as semimartingale calculus”, Russian Math. Surveys, 49:3 (1994), 43–95
Citation in format AMSBIB
\Bibitem{Kir94}
\by A.~I.~Kirillov
\paper Infinite-dimensional analysis and quantum theory as semimartingale calculus
\jour Russian Math. Surveys
\yr 1994
\vol 49
\issue 3
\pages 43--95
\mathnet{http://mi.mathnet.ru/eng/rm1197}
\crossref{https://doi.org/10.1070/RM1994v049n03ABEH002257}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1289387}
\zmath{https://zbmath.org/?q=an:0925.60047}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994RuMaS..49...43K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QX25500002}
Linking options:
  • https://www.mathnet.ru/eng/rm1197
  • https://doi.org/10.1070/RM1994v049n03ABEH002257
  • https://www.mathnet.ru/eng/rm/v49/i3/p43
  • This publication is cited in the following 15 articles:
    1. Massimiliano Gubinelli, Encyclopedia of Mathematical Physics, 2025, 648  crossref
    2. J. Montaldi, O. G. Smolyanov, “Feynman path integrals and Lebesgue–Feynman measures”, Dokl. Math., 96:1 (2017), 368  crossref
    3. L. C. Garsía-Naranjo, J. Montaldi, O. G. Smolyanov, “Transformations of Feynman path integrals and generalized densities of Feynman pseudomeasures”, Dokl. Math., 93:3 (2016), 282  crossref
    4. J. Gough, T. S. Ratiu, O. G. Smolyanov, “Quantum anomalies and logarithmic derivatives of feynman pseudomeasures”, Dokl. Math., 92:3 (2015), 764  crossref
    5. Bogachev V.I., Kirillov A.I., Shaposhnikov S.V., “Invariant Measures of Diffusions with Gradient Drifts”, Doklady Mathematics, 82:2 (2010), 790–793  crossref  isi
    6. V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    7. Aigner E., “Differentiability of Loeb measures”, Strength of Nonstandard Analysis, 2007, 238–249  isi
    8. Hongwei Long, “Necessary and sufficient conditions for the symmetrizability of dierential operators over innite dimensional state spaces”, form, 12:2 (2000), 167  crossref  mathscinet  zmath  isi
    9. A. I. Kirillov, V. Yu. Mamakin, “Stochastic model of phase transition and metastability”, Theoret. and Math. Phys., 123:1 (2000), 494–503  mathnet  crossref  crossref  zmath  isi  elib
    10. von Weizsaecker, H, “Connections between smooth measures and their logarithmic gradients and derivatives”, Doklady Akademii Nauk, 369:2 (1999), 158  mathnet  mathscinet  zmath  isi
    11. Smolyanov, OG, “Smooth probability measures and associated differential operators”, Infinite Dimensional Analysis Quantum Probability and Related Topics, 2:1 (1999), 51  crossref  mathscinet  zmath  isi  elib
    12. Vladimir Bogachev, Michael Röckner, “Elliptic equations for infinite dimensional probability distributions and Lyapunov functions”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 329:8 (1999), 705  crossref
    13. A. I. Kirillov, “Generalized differentiable product measures”, Math. Notes, 63:1 (1998), 33–49  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. H. von Weizsäcker, O. G. Smolyanov, “Formulae with logarithmic derivatives of measures related to the quantization of infinite-dimensional Hamiltonian systems”, Russian Math. Surveys, 51:2 (1996), 357–358  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. A. I. Kirillov, “Sine-Gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization”, Theoret. and Math. Phys., 105:2 (1995), 1329–1345  mathnet  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:707
    Russian version PDF:350
    English version PDF:50
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025