Citation:
H. von Weizsäcker, O. G. Smolyanov, “Formulae with logarithmic derivatives of measures related to the quantization of infinite-dimensional Hamiltonian systems”, Russian Math. Surveys, 51:2 (1996), 357–358
\Bibitem{VonSmo96}
\by H.~von Weizs\"acker, O.~G.~Smolyanov
\paper Formulae with logarithmic derivatives of measures related to the quantization of infinite-dimensional Hamiltonian systems
\jour Russian Math. Surveys
\yr 1996
\vol 51
\issue 2
\pages 357--358
\mathnet{http://mi.mathnet.ru/eng/rm950}
\crossref{https://doi.org/10.1070/RM1996v051n02ABEH002899}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1401542}
\zmath{https://zbmath.org/?q=an:0877.58032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1996RuMaS..51..357V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VK98200023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0040651628}
Linking options:
https://www.mathnet.ru/eng/rm950
https://doi.org/10.1070/RM1996v051n02ABEH002899
https://www.mathnet.ru/eng/rm/v51/i2/p149
This publication is cited in the following 8 articles:
Aigner E., “Differentiability of Loeb measures”, Strength of Nonstandard Analysis, 2007, 238–249
M. Yu. Neklyudov, “Derivative of the Wiener Measure on Trajectories in Compact Lie Groups”, Math. Notes, 75:5 (2004), 734–738
Smolyanov, OG, “Smooth probability measures and associated differential operators”, Infinite Dimensional Analysis Quantum Probability and Related Topics, 2:1 (1999), 51
von W.eizsaecker H., Smolyanov O.G., “Connections between smooth measures and their logarithmic gradients and derivatives”, Doklady Akademii Nauk, 369:2 (1999), 158–162
Albeverio S., Smolyanov O.G., “Feynman-Kac formulas for evolution differential equations with white noise coefficients”, Doklady Akademii Nauk, 367:1 (1999), 26–30
Albeverio S., Smolyanov O.G., “Functional integral representations of solutions for stochastic equations of Schrodinger-Belavkin type”, Doklady Akademii Nauk, 364:6 (1999), 747–751
Kupsch I., Smolyanov O.G., “Representations of supersymmetric Fock space in some spaces of functions taking values in a superalgebra”, Doklady Akademii Nauk, 363:6 (1998), 741–745
S. A. Albeverio, O. G. Smolyanov, “Infinite-dimensional stochastic Schrödinger–Belavkin equations”, Russian Math. Surveys, 52:4 (1997), 822–823