Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1995, Volume 59, Issue 1, Pages 121–139
DOI: https://doi.org/10.1070/IM1995v059n01ABEH000005
(Mi im5)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the reconstruction of measures from their logarithmic derivatives

A. I. Kirillov
References:
Abstract: Sufficient conditions are given for functions of a given family to be the logarithmic derivatives of a probability measure.
Received: 30.03.1993
Bibliographic databases:
MSC: Primary 46G12; Secondary 28C20, 60B05
Language: English
Original paper language: Russian
Citation: A. I. Kirillov, “On the reconstruction of measures from their logarithmic derivatives”, Izv. Math., 59:1 (1995), 121–139
Citation in format AMSBIB
\Bibitem{Kir95}
\by A.~I.~Kirillov
\paper On the reconstruction of measures from their logarithmic derivatives
\jour Izv. Math.
\yr 1995
\vol 59
\issue 1
\pages 121--139
\mathnet{http://mi.mathnet.ru/eng/im5}
\crossref{https://doi.org/10.1070/IM1995v059n01ABEH000005}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1328557}
\zmath{https://zbmath.org/?q=an:0840.60004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ88700005}
Linking options:
  • https://www.mathnet.ru/eng/im5
  • https://doi.org/10.1070/IM1995v059n01ABEH000005
  • https://www.mathnet.ru/eng/im/v59/i1/p121
  • This publication is cited in the following 9 articles:
    1. Massimiliano Gubinelli, Encyclopedia of Mathematical Physics, 2025, 648  crossref
    2. V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    3. Albeverio S., Kondratiev Y., Pasurek T., Rockner M., “Euclidean Gibbs Measures on Loop Lattices: Existence and a Priori Estimates”, Ann. Probab., 32:1A (2004), 153–190  mathscinet  zmath  isi
    4. Sergio Albeverio, Yuri Kondratiev, Tatiana Pasurek, Michael Röckner, “Euclidean Gibbs measures on loop lattices: Existence and a priori estimates”, Ann. Probab., 32:1A (2004)  crossref
    5. Albeverio S., Kondratiev Y., Rockner M., Tsikalenko T., “A Priori Estimates for Symmetrizing Measures and their Applications to Gibbs States”, J. Funct. Anal., 171:2 (2000), 366–400  crossref  mathscinet  zmath  isi
    6. von Weizsaecker H., Smolyanov O., “Connections Between Smooth Measures and their Logarithmic Gradients and Derivatives”, Dokl. Akad. Nauk, 369:2 (1999), 158–162  mathnet  mathscinet  zmath  isi
    7. Albeverio S., Kondratiev Y., Rockner M., Tsikalenko T., “A-Priori Estimates and Existence of Gibbs Measures: a Simplified Proof”, Comptes Rendus Acad. Sci. Ser. I-Math., 328:11 (1999), 1049–1054  crossref  mathscinet  zmath  adsnasa  isi
    8. A. I. Kirillov, “Generalized differentiable product measures”, Math. Notes, 63:1 (1998), 33–49  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. Norin N., Smolyanov O., “Logarithmic Derivatives of the Measures and Gibbs Distributions”, Dokl. Akad. Nauk, 354:4 (1997), 456–460  mathnet  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:480
    Russian version PDF:138
    English version PDF:37
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025