Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 161, Number 2, Pages 191–203
DOI: https://doi.org/10.4213/tmf6431
(Mi tmf6431)
 

This article is cited in 23 scientific papers (total in 23 papers)

The 2×2 matrix Schlesinger system and the Belavin–Polyakov–Zamolodchikov system

D. P. Novikov

Omsk State Technical University, Omsk, Russia
References:
Abstract: We show that the Belavin–Polyakov–Zamolodchikov equation of the minimal model of conformal field theory with the central charge c=1 for the Virasoro algebra is contained in a system of linear equations that generates the Schlesinger system with 2×2 matrices. This generalizes Suleimanov's result on the Painlevé equations. We consider the properties of the solutions, which are expressible in terms of the Riemann theta function.
Keywords: Belavin–Polyakov–Zamolodchikov equation, Schlesinger system, Painlevé equation, Garnier system.
Received: 02.12.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 161, Issue 2, Pages 1485–1496
DOI: https://doi.org/10.1007/s11232-009-0135-y
Bibliographic databases:
Language: Russian
Citation: D. P. Novikov, “The 2×2 matrix Schlesinger system and the Belavin–Polyakov–Zamolodchikov system”, TMF, 161:2 (2009), 191–203; Theoret. and Math. Phys., 161:2 (2009), 1485–1496
Citation in format AMSBIB
\Bibitem{Nov09}
\by D.~P.~Novikov
\paper The~$2{\times}2$ matrix Schlesinger system and the~Belavin--Polyakov--Zamolodchikov system
\jour TMF
\yr 2009
\vol 161
\issue 2
\pages 191--203
\mathnet{http://mi.mathnet.ru/tmf6431}
\crossref{https://doi.org/10.4213/tmf6431}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2667345}
\zmath{https://zbmath.org/?q=an:1183.81112}
\elib{https://elibrary.ru/item.asp?id=15307034}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 161
\issue 2
\pages 1485--1496
\crossref{https://doi.org/10.1007/s11232-009-0135-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272664400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71949098661}
Linking options:
  • https://www.mathnet.ru/eng/tmf6431
  • https://doi.org/10.4213/tmf6431
  • https://www.mathnet.ru/eng/tmf/v161/i2/p191
  • This publication is cited in the following 23 articles:
    1. V. A. Pavlenko, “Solutions of Analogs of Time-Dependent Schrödinger Equations Corresponding to a Pair of H2+2+1 Hamiltonian Systems in the Hierarchy of Degenerations of an Isomonodromic Garnier System”, Diff Equat, 60:1 (2024), 77  crossref
    2. Christian Hagendorf, Hjalmar Rosengren, “Nearest-Neighbour Correlation Functions for the Supersymmetric XYZ Spin Chain and Painlevé VI”, Commun. Math. Phys., 405:4 (2024)  crossref
    3. V. A Pavlenko, “REShENIYa ANALOGOV VREMENNYKh URAVNENIY ShR¨EDINGERA, SOOTVETSTVUYuShchIKh PARE GAMIL'TONOVYKh SISTEM ????2+2+1 IERARKhII VYROZhDENIY IZOMONODROMNOY SISTEMY GARN'E”, Differencialʹnye uravneniâ, 60:1 (2024), 76  crossref
    4. V. A. Pavlenko, “Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of H3+2 Hamiltonian systems”, Theoret. and Math. Phys., 212:3 (2022), 1181–1192  mathnet  crossref  crossref  mathscinet  adsnasa
    5. B. I. Suleimanov, “Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom”, St. Petersburg Math. J., 33:6 (2022), 995–1009  mathnet  crossref
    6. Lencses M., Novaes F., “Classical Conformal Blocks and Accessory Parameters From Isomonodromic Deformations”, J. High Energy Phys., 2018, no. 4, 096  crossref  mathscinet  isi  scopus
    7. V. A. Pavlenko, B. I. Suleimanov, “Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system H2+1+1+1”, Ufa Math. J., 10:4 (2018), 92–102  mathnet  crossref  isi
    8. V. A. Pavlenko, B. I. Suleimanov, ““Quantizations” of isomonodromic Hamilton system H72+1”, Ufa Math. J., 9:4 (2017), 97–107  mathnet  crossref  isi  elib
    9. Conte R., “Generalized Bonnet Surfaces and Lax pairs of P-Vi”, J. Math. Phys., 58:10 (2017), 103508  crossref  mathscinet  zmath  isi  scopus
    10. D. P. Novikov, B. I. Suleimanov, ““Quantization” of an isomonodromic Hamiltonian Garnier system with two degrees of freedom”, Theoret. and Math. Phys., 187:1 (2016), 479–496  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential”, Ufa Math. J., 8:3 (2016), 136–154  mathnet  crossref  mathscinet  isi  elib
    12. Gavrylenko P. Marshakov A., “Exact conformal blocks for the W-algebras, twist fields and isomonodromic deformations”, J. High Energy Phys., 2016, no. 2, 181  crossref  mathscinet  zmath  isi  elib  scopus
    13. Rosengren H., “Special Polynomials Related To the Supersymmetric Eight-Vertex Model: a Summary”, Commun. Math. Phys., 340:3 (2015), 1143–1170  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Nagoya H., “Fractional Calculus of Quantum Painlevé Systems of Type _ ???”, Algebraic and Analytic Aspects of Integrable Systems and Painlev? Equations, Contemporary Mathematics, 651, eds. Dzhamay A., Maruno K., Ormerod C., Amer Mathematical Soc, 2015, 39–64  crossref  mathscinet  zmath  isi
    15. Rumanov I., “Beta Ensembles, Quantum Painlevé Equations and Isomonodromy Systems”, Algebraic and Analytic Aspects of Integrable Systems and Painlev? Equations, Contemporary Mathematics, 651, eds. Dzhamay A., Maruno K., Ormerod C., Amer Mathematical Soc, 2015, 125–155  crossref  mathscinet  zmath  isi
    16. A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423  mathnet  crossref  isi  scopus
    17. H. Nagoya, Ya. Yamada, “Symmetries of quantum Lax equations for the Painlevé equations”, Ann. Henri Poincaré, 15:2 (2014), 313–344  crossref  mathscinet  zmath  adsnasa  isi  scopus
    18. B. I. Suleimanov, ““Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom”, Funct. Anal. Appl., 48:3 (2014), 198–207  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    19. Conte R., Dornic I., “The Master Painlevé VI Heat Equation”, C. R. Math., 352:10 (2014), 803–806  crossref  mathscinet  zmath  isi  scopus
    20. B. I. Suleimanov, ““Kvantovaya” linearizatsiya uravnenii Penleve kak komponenta ikh L,A par”, Ufimsk. matem. zhurn., 4:2 (2012), 127–135  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:851
    Full-text PDF :334
    References:127
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025