Abstract:
We show that the Belavin–Polyakov–Zamolodchikov equation of the minimal model of conformal field theory with the central charge c=1 for the Virasoro algebra is contained in a system of linear equations that generates the Schlesinger system with 2×2 matrices. This generalizes Suleimanov's result on the Painlevé equations. We consider the properties of the solutions, which are expressible in terms of the Riemann theta function.
Citation:
D. P. Novikov, “The 2×2 matrix Schlesinger system and the Belavin–Polyakov–Zamolodchikov system”, TMF, 161:2 (2009), 191–203; Theoret. and Math. Phys., 161:2 (2009), 1485–1496
This publication is cited in the following 23 articles:
V. A. Pavlenko, “Solutions of Analogs of Time-Dependent Schrödinger
Equations Corresponding to a Pair of H2+2+1
Hamiltonian Systems in the Hierarchy of Degenerations
of an Isomonodromic Garnier System”, Diff Equat, 60:1 (2024), 77
Christian Hagendorf, Hjalmar Rosengren, “Nearest-Neighbour Correlation Functions for the Supersymmetric XYZ Spin Chain and Painlevé VI”, Commun. Math. Phys., 405:4 (2024)
V. A Pavlenko, “REShENIYa ANALOGOV VREMENNYKh URAVNENIY ShR¨EDINGERA, SOOTVETSTVUYuShchIKh PARE GAMIL'TONOVYKh SISTEM ????2+2+1 IERARKhII VYROZhDENIY IZOMONODROMNOY SISTEMY GARN'E”, Differencialʹnye uravneniâ, 60:1 (2024), 76
V. A. Pavlenko, “Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of H3+2 Hamiltonian systems”, Theoret. and Math. Phys., 212:3 (2022), 1181–1192
B. I. Suleimanov, “Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom”, St. Petersburg Math. J., 33:6 (2022), 995–1009
Lencses M., Novaes F., “Classical Conformal Blocks and Accessory Parameters From Isomonodromic Deformations”, J. High Energy Phys., 2018, no. 4, 096
V. A. Pavlenko, B. I. Suleimanov, “Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system H2+1+1+1”, Ufa Math. J., 10:4 (2018), 92–102
V. A. Pavlenko, B. I. Suleimanov, ““Quantizations” of isomonodromic Hamilton system H72+1”, Ufa Math. J., 9:4 (2017), 97–107
Conte R., “Generalized Bonnet Surfaces and Lax pairs of P-Vi”, J. Math. Phys., 58:10 (2017), 103508
D. P. Novikov, B. I. Suleimanov, ““Quantization” of an isomonodromic Hamiltonian Garnier system with two degrees of freedom”, Theoret. and Math. Phys., 187:1 (2016), 479–496
B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential”, Ufa Math. J., 8:3 (2016), 136–154
Gavrylenko P. Marshakov A., “Exact conformal blocks for the W-algebras, twist fields and isomonodromic deformations”, J. High Energy Phys., 2016, no. 2, 181
Rosengren H., “Special Polynomials Related To the Supersymmetric Eight-Vertex Model: a Summary”, Commun. Math. Phys., 340:3 (2015), 1143–1170
Nagoya H., “Fractional Calculus of Quantum Painlevé Systems of Type _ ???”, Algebraic and Analytic Aspects of Integrable Systems and Painlev? Equations, Contemporary Mathematics, 651, eds. Dzhamay A., Maruno K., Ormerod C., Amer Mathematical Soc, 2015, 39–64
Rumanov I., “Beta Ensembles, Quantum Painlevé Equations and Isomonodromy Systems”, Algebraic and Analytic Aspects of Integrable Systems and Painlev? Equations, Contemporary Mathematics, 651, eds. Dzhamay A., Maruno K., Ormerod C., Amer Mathematical Soc, 2015, 125–155
A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423
H. Nagoya, Ya. Yamada, “Symmetries of quantum Lax equations for the Painlevé equations”, Ann. Henri Poincaré, 15:2 (2014), 313–344
B. I. Suleimanov, ““Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom”, Funct. Anal. Appl., 48:3 (2014), 198–207
Conte R., Dornic I., “The Master Painlevé VI Heat Equation”, C. R. Math., 352:10 (2014), 803–806
B. I. Suleimanov, ““Kvantovaya” linearizatsiya uravnenii Penleve kak komponenta ikh L,A par”, Ufimsk. matem. zhurn., 4:2 (2012), 127–135