Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 161, Number 2, Pages 204–211
DOI: https://doi.org/10.4213/tmf6432
(Mi tmf6432)
 

This article is cited in 13 scientific papers (total in 13 papers)

Lorentz-invariant quantization of the Yang–Mills theory free of the Gribov ambiguity

A. A. Slavnov

Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We propose a new formulation of the Yang–Mills theory that allows avoiding the Gribov ambiguity of gauge fixing.
Keywords: gauge, Gribov ambiguity, unitarity.
Received: 24.03.2009
English version:
Theoretical and Mathematical Physics, 2009, Volume 161, Issue 2, Pages 1497–1502
DOI: https://doi.org/10.1007/s11232-009-0136-x
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Slavnov, “Lorentz-invariant quantization of the Yang–Mills theory free of the Gribov ambiguity”, TMF, 161:2 (2009), 204–211; Theoret. and Math. Phys., 161:2 (2009), 1497–1502
Citation in format AMSBIB
\Bibitem{Sla09}
\by A.~A.~Slavnov
\paper Lorentz-invariant quantization of the~Yang--Mills theory free of the~Gribov ambiguity
\jour TMF
\yr 2009
\vol 161
\issue 2
\pages 204--211
\mathnet{http://mi.mathnet.ru/tmf6432}
\crossref{https://doi.org/10.4213/tmf6432}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2667346}
\zmath{https://zbmath.org/?q=an:1183.81113}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 161
\issue 2
\pages 1497--1502
\crossref{https://doi.org/10.1007/s11232-009-0136-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272664400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71949130282}
Linking options:
  • https://www.mathnet.ru/eng/tmf6432
  • https://doi.org/10.4213/tmf6432
  • https://www.mathnet.ru/eng/tmf/v161/i2/p204
  • This publication is cited in the following 13 articles:
    1. A. A. Slavnov, “A possibility to describe models of massive non-Abelian gauge fields in the framework of a renormalizable theory”, Theoret. and Math. Phys., 193:3 (2017), 1826–1833  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. Mielke E.W., “Maxwell and Yang-Mills Theory”: Mielke, EW, Geometrodynamics of Gauge Fields: on the Geometry of Yang-Mills and Gravitational Gauge Theories, 2Nd Edition, Mathematical Physics Studies, Springer International Publishing Ag, 2017, 37–63  crossref  mathscinet  isi
    3. A. A. Slavnov, “Nonperturbative quantization of models of massive non-Abelian gauge fields with spontaneously broken symmetry”, Theoret. and Math. Phys., 189:2 (2016), 1645–1650  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. Maas A., “More on the properties of the first Gribov region in Landau gauge”, Phys. Rev. D, 93:5 (2016), 054504  crossref  mathscinet  isi  scopus
    5. A. A. Slavnov, “New approach to the quantization of the Yang–Mills field”, Theoret. and Math. Phys., 183:2 (2015), 585–596  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    6. A. A. Slavnov, “Quantization of non-Abelian gauge fields”, Proc. Steklov Inst. Math., 289 (2015), 286–290  mathnet  crossref  crossref  isi  elib
    7. A. A. Slavnov, “Soliton solutions of classical equations of motions in the modified formulation of the Yang–Mills theory”, Theoret. and Math. Phys., 184:3 (2015), 1342–1349  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    8. P. S. Anisimov, “One-loop calculation of the $\beta$-function in the modified formulation of the Yang–Mills theory”, Theoret. and Math. Phys., 180:3 (2014), 1005–1018  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    9. A. A. Slavnov, “Quantization of non-Abelian gauge fields beyond the perturbation theory framework”, Theoret. and Math. Phys., 181:1 (2014), 1302–1306  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    10. Slavnov A.A., “Nonabelian Gauge Fields Beyond Perturbation Theory”, II Russian-Spanish Congress on Particle and Nuclear Physics At All Scales, Astroparticle Physics and Cosmology, AIP Conference Proceedings, 1606, ed. Andrianov A. Espriu D. Andrianov V. Kolevatov S., Amer Inst Physics, 2014, 346–348  crossref  isi  scopus
    11. A. A. Slavnov, “The Yang–Mills theory as a massless limit of a massive gauge-invariant model”, Theoret. and Math. Phys., 175:1 (2013), 447–453  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    12. A. Quadri, A. A. Slavnov, “Ambiguity-free formulation of the Higgs–Kibble model”, Theoret. and Math. Phys., 166:3 (2011), 291–302  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    13. Quadri A., Slavnov A.A., “Renormalization of the Yang-Mills theory in the ambiguity-free gauge”, J. High Energy Phys., 2010, no. 7, 087, 22 pp.  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:753
    Full-text PDF :310
    References:90
    First page:20
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025